AMPA receptors mediate acetylcholine release from starburst amacrine cells in the rabbit retina.

Sally I Firth, Wei Li, Stephen C Massey, David W Marshak
Author Information
  1. Sally I Firth: Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas, 77225, USA.

Abstract

The light response of starburst amacrine cells is initiated by glutamate released from bipolar cells. To identify the receptors that mediate this response, we used a combination of anatomical and physiological techniques. An in vivo, rabbit eyecup was preloaded with [(3)H]-choline, and the [(3)H]-acetylcholine (ACh) released into the superfusate was monitored. A photopic, 3 Hz flashing light increased ACh release, and the selective AMPA receptor antagonist, GYKI 53655, blocked this light-evoked response. Nonselective AMPA/kainate agonists increased the release of ACh, but the specific kainate receptor agonist, SYM 2081, did not increase ACh release. Selective AMPA receptor antagonists, GYKI 53655 or GYKI 52466, also blocked the responses to agonists. We conclude that the predominant excitatory input to starburst amacrine cells is mediated by AMPA receptors. We also labeled lightly fixed rabbit retinas with antisera to choline acetyltransferase (ChAT), AMPA receptor subunits GluR1, GluR2/3, or GluR4, and kainate receptor subunits GluR6/7 and KA2. Labeled puncta were observed in the inner plexiform layer with each of these antisera to glutamate receptors, but only GluR2/3-IR puncta and GluR4-IR puncta were found on the ChAT-IR processes. The same was true of starburst cells injected intracellularly with Neurobiotin, and these AMPA receptor subunits were localized to two populations of puncta. The AMPA receptors are expected to desensitize rapidly, enhancing the sensitivity of starburst amacrine cells to moving or other rapidly changing stimuli.

References

  1. J Neurosci. 1986 Jan;6(1):1-13 [PMID: 3944611]
  2. Brain Res. 1985 Mar 4;328(2):374-7 [PMID: 2985186]
  3. Brain Res. 1987 Nov 17;426(1):119-30 [PMID: 3690309]
  4. Proc Natl Acad Sci U S A. 1989 May;86(9):3414-8 [PMID: 2566171]
  5. J Neurosci. 1991 Jan;11(1):111-22 [PMID: 1670781]
  6. J Neurosci. 1991 Jan;11(1):123-33 [PMID: 1824711]
  7. J Comp Neurol. 1991 Jul 1;309(1):40-70 [PMID: 1894768]
  8. Vis Neurosci. 1991 Nov;7(5):479-86 [PMID: 1764417]
  9. J Neurosci. 1992 Feb;12(2):595-606 [PMID: 1371315]
  10. J Comp Neurol. 1992 Jul 1;321(1):133-49 [PMID: 1613135]
  11. J Neurophysiol. 1993 Mar;69(3):730-8 [PMID: 8385192]
  12. J Neurosci. 1995 Jul;15(7 Pt 2):5334-45 [PMID: 7623156]
  13. Brain Res. 1996 Feb 26;710(1-2):303-7 [PMID: 8963676]
  14. J Neurophysiol. 1996 Jan;75(1):469-80 [PMID: 8822571]
  15. J Comp Neurol. 1996 Jul 15;371(1):164-78 [PMID: 8835725]
  16. J Neurophysiol. 1997 Feb;77(2):675-89 [PMID: 9065840]
  17. Neuropharmacology. 1996;35(12):1689-702 [PMID: 9076748]
  18. J Pharmacol Exp Ther. 1998 May;285(2):539-45 [PMID: 9580595]
  19. J Neurosci. 1999 Feb 1;19(3):1027-37 [PMID: 9920666]
  20. Vis Neurosci. 1999 Jan-Feb;16(1):169-77 [PMID: 10022488]
  21. Pharmacol Rev. 1999 Mar;51(1):7-61 [PMID: 10049997]
  22. J Comp Neurol. 1999 Apr 28;407(1):47-64 [PMID: 10213187]
  23. J Comp Neurol. 1999 Apr 28;407(1):65-76 [PMID: 10213188]
  24. J Comp Neurol. 1999 May 24;408(1):97-106 [PMID: 10331582]
  25. J Comp Neurol. 1999 Oct 18;413(2):305-26 [PMID: 10524341]
  26. J Neurosci. 2001 Nov 1;21(21):8636-47 [PMID: 11606651]
  27. Vis Neurosci. 1999 Sep-Oct;16(5):835-42 [PMID: 10580719]
  28. Eur J Neurosci. 1999 Dec;11(12):4233-40 [PMID: 10594649]
  29. Vis Neurosci. 1999 Nov-Dec;16(6):1105-14 [PMID: 10614590]
  30. Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3600-6 [PMID: 11006258]
  31. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4172-7 [PMID: 11274440]
  32. Eur J Neurosci. 2002 Feb;15(3):465-74 [PMID: 11876774]
  33. Vis Neurosci. 2001 Sep-Oct;18(5):675-85 [PMID: 11925003]
  34. J Comp Neurol. 2002 May 27;447(2):138-51 [PMID: 11977117]
  35. J Comp Neurol. 2002 Jul 1;448(3):230-48 [PMID: 12115706]
  36. J Comp Neurol. 2002 Jul 22;449(2):129-40 [PMID: 12115684]
  37. Curr Opin Neurobiol. 2002 Aug;12(4):405-10 [PMID: 12139988]
  38. Vis Neurosci. 2002 Jan-Feb;19(1):1-13 [PMID: 12180854]
  39. Vis Neurosci. 2002 Mar-Apr;19(2):145-62 [PMID: 12385627]
  40. J Neurophysiol. 1976 Nov;39(6):1210-9 [PMID: 993828]
  41. J Neurochem. 1979 Apr;32(4):1327-9 [PMID: 430091]
  42. J Neurochem. 1981 Oct;37(4):867-77 [PMID: 7320727]
  43. Vision Res. 1981;21(11):1559-63 [PMID: 7336584]
  44. J Neurosci. 1982 Nov;2(11):1633-43 [PMID: 7143043]
  45. Brain Res. 1983 Feb 14;261(1):138-44 [PMID: 6301622]
  46. Proc R Soc Lond B Biol Sci. 1984 Feb 22;220(1221):501-8 [PMID: 6142459]
  47. Proc R Soc Lond B Biol Sci. 1984 Nov 22;223(1230):101-19 [PMID: 6151180]
  48. Neurosci Lett. 1987 Mar 9;74(3):281-5 [PMID: 3550530]

Grants

  1. R01 EY006515/NEI NIH HHS
  2. EY06515/NEI NIH HHS
  3. R01 EY006472/NEI NIH HHS
  4. EY06472/NEI NIH HHS
  5. EY10608/NEI NIH HHS
  6. P30 EY010608/NEI NIH HHS
  7. R01 EY006472-15/NEI NIH HHS

MeSH Term

Acetylcholine
Amacrine Cells
Animals
Biotin
Choline
Choline O-Acetyltransferase
Excitatory Amino Acid Agonists
Excitatory Amino Acid Antagonists
Glutamic Acid
Photic Stimulation
Rabbits
Receptors, AMPA
Retina
Synaptic Transmission
Tritium
Vision, Ocular

Chemicals

Excitatory Amino Acid Agonists
Excitatory Amino Acid Antagonists
Receptors, AMPA
glutamate receptor ionotropic, AMPA 4
neurobiotin
Tritium
Glutamic Acid
Biotin
Choline O-Acetyltransferase
Choline
Acetylcholine
glutamate receptor ionotropic, AMPA 2

Word Cloud

Created with Highcharts 10.0.0AMPAcellsreceptorstarburstreceptorsamacrineAChreleasepunctaresponserabbit3GYKIsubunitslightglutamatereleasedmediate[increased53655blockedagonistskainatealsoantiserarapidlyinitiatedbipolaridentifyusedcombinationanatomicalphysiologicaltechniquesvivoeyecuppreloadedH]-cholineH]-acetylcholinesuperfusatemonitoredphotopicHzflashingselectiveantagonistlight-evokedNonselectiveAMPA/kainatespecificagonistSYM2081increaseSelectiveantagonists52466responsesconcludepredominantexcitatoryinputmediatedlabeledlightlyfixedretinascholineacetyltransferaseChATGluR1GluR2/3GluR4GluR6/7KA2LabeledobservedinnerplexiformlayerGluR2/3-IRGluR4-IRfoundChAT-IRprocessestrueinjectedintracellularlyNeurobiotinlocalizedtwopopulationsexpecteddesensitizeenhancingsensitivitymovingchangingstimuliacetylcholineretina

Similar Articles

Cited By