The role of evolution in the emergence of infectious diseases.

Rustom Antia, Roland R Regoes, Jacob C Koella, Carl T Bergstrom
Author Information
  1. Rustom Antia: Department of Biology, Emory University, Atlanta, Georgia 30322, USA. rantia@emory.edu

Abstract

It is unclear when, where and how novel pathogens such as human immunodeficiency virus (HIV), monkeypox and severe acute respiratory syndrome (SARS) will cross the barriers that separate their natural reservoirs from human populations and ignite the epidemic spread of novel infectious diseases. New pathogens are believed to emerge from animal reservoirs when ecological changes increase the pathogen's opportunities to enter the human population and to generate subsequent human-to-human transmission. Effective human-to-human transmission requires that the pathogen's basic reproductive number, R(0), should exceed one, where R(0) is the average number of secondary infections arising from one infected individual in a completely susceptible population. However, an increase in R(0), even when insufficient to generate an epidemic, nonetheless increases the number of subsequently infected individuals. Here we show that, as a consequence of this, the probability of pathogen evolution to R(0) > 1 and subsequent disease emergence can increase markedly.

References

  1. Science. 2003 Jun 20;300(5627):1966-70 [PMID: 12766207]
  2. Science. 2000 Jul 28;289(5479):518-9 [PMID: 10939954]
  3. Genetics. 2003 Feb;163(2):467-74 [PMID: 12618386]
  4. N Engl J Med. 1998 Aug 20;339(8):556-9 [PMID: 9709051]
  5. Int J Epidemiol. 1988 Sep;17(3):643-50 [PMID: 2850277]
  6. Math Biosci. 1996 Oct 1;137(1):25-50 [PMID: 8854661]
  7. Science. 2000 May 26;288(5470):1432-5 [PMID: 10827955]
  8. Science. 2003 May 30;300(5624):1351 [PMID: 12775803]
  9. Nature. 2003 May 29;423(6939):467 [PMID: 12774078]
  10. Br Med Bull. 1998;54(3):693-702 [PMID: 10326294]
  11. Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):1001-12 [PMID: 11516378]
  12. Science. 2003 Jun 20;300(5627):1961-6 [PMID: 12766206]
  13. Science. 2003 Oct 10;302(5643):276-8 [PMID: 12958366]
  14. J Theor Biol. 1996 Mar 7;179(1):1-11 [PMID: 8733427]
  15. Science. 1999 Apr 16;284(5413):407, 409-10 [PMID: 10232977]
  16. Science. 2000 Jan 28;287(5453):607-14 [PMID: 10649986]
  17. Trends Ecol Evol. 1995 Aug;10(8):319-24 [PMID: 21237055]
  18. Emerg Infect Dis. 2001 May-Jun;7(3):434-8 [PMID: 11384521]
  19. Parasitology. 1990;100 Suppl:S89-101 [PMID: 2122393]
  20. Emerg Infect Dis. 2002 May;8(5):451-7 [PMID: 11996677]
  21. Bull Math Biol. 1985;47(2):239-62 [PMID: 4027436]
  22. Biol Rev Camb Philos Soc. 2001 May;76(2):239-54 [PMID: 11396848]
  23. Philos Trans R Soc Lond B Biol Sci. 2001 Jun 29;356(1410):901-10 [PMID: 11405937]

MeSH Term

Animals
Biological Evolution
Communicable Diseases
Ecosystem
Host-Parasite Interactions
Humans
Models, Biological
Mutation
Probability
Stochastic Processes

Word Cloud

Created with Highcharts 10.0.0R0humanincreasenumbernovelpathogensreservoirsepidemicinfectiousdiseasespathogen'spopulationgeneratesubsequenthuman-to-humantransmissiononeinfectedevolutionemergenceunclearimmunodeficiencyvirusHIVmonkeypoxsevereacuterespiratorysyndromeSARSwillcrossbarriersseparatenaturalpopulationsignitespreadNewbelievedemergeanimalecologicalchangesopportunitiesenterEffectiverequiresbasicreproductiveexceedaveragesecondaryinfectionsarisingindividualcompletelysusceptibleHowevereveninsufficientnonethelessincreasessubsequentlyindividualsshowconsequenceprobabilitypathogen>1diseasecanmarkedlyrole

Similar Articles

Cited By