Estimates of human cochlear tuning at low levels using forward and simultaneous masking.

Andrew J Oxenham, Christopher A Shera
Author Information
  1. Andrew J Oxenham: Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. oxenham@mit.edu

Abstract

Auditory filter shapes were derived from psychophysical measurements in eight normal-hearing listeners using a variant of the notched-noise method for brief signals in forward and simultaneous masking. Signal frequencies of 1, 2, 4, 6, and 8 kHz were tested. The signal level was fixed at 10 dB above absolute threshold in the forward-masking conditions and fixed at either 10 or 35 dB above absolute threshold in the simultaneous-masking conditions. The results show that filter equivalent rectangular bandwidths (ERBs) are substantially narrower in forward masking than has been found in previous studies using simultaneous masking. Furthermore, in contrast to earlier studies, the sharpness of tuning doubles over the range of frequencies tested, giving Q(ERB) values of about 10 and 20 at signal frequencies of 1 and 8 kHz, respectively. It is argued that the new estimates of auditory filter bandwidth provide a more accurate estimate of human cochlear tuning at low levels than earlier estimates using simultaneous masking at higher levels, and that they are therefore more suitable for comparison to cochlear tuning data from other species. The data may also prove helpful in defining the parameters for nonlinear models of human cochlear processing.

References

  1. J Acoust Soc Am. 1999 Nov;106(5):2761-78 [PMID: 10573892]
  2. J Acoust Soc Am. 2000 Jan;107(1):501-7 [PMID: 10641658]
  3. J Acoust Soc Am. 2000 Nov;108(5 Pt 1):2318-28 [PMID: 11108372]
  4. J Acoust Soc Am. 2001 Aug;110(2):1074-88 [PMID: 11519576]
  5. J Acoust Soc Am. 2002 Feb;111(2):996-1011 [PMID: 11863202]
  6. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3318-23 [PMID: 11867706]
  7. J Acoust Soc Am. 2002 Mar;111(3):1330-9 [PMID: 11931310]
  8. Curr Opin Neurobiol. 2002 Aug;12(4):433-40 [PMID: 12139992]
  9. J Acoust Soc Am. 2003 May;113(5):2762-72 [PMID: 12765394]
  10. J Acoust Soc Am. 1968 May;43(5):1120-8 [PMID: 5648103]
  11. J Acoust Soc Am. 1972 Jun;51(6):1885-94 [PMID: 4339849]
  12. J Acoust Soc Am. 1976 Mar;59(3):640-54 [PMID: 1254791]
  13. J Acoust Soc Am. 1978 Feb;63(2):524-32 [PMID: 670549]
  14. J Acoust Soc Am. 1978 May;63(5):1520-7 [PMID: 690331]
  15. J Acoust Soc Am. 1980 Jan;67(1):229-45 [PMID: 7354191]
  16. J Acoust Soc Am. 1980 Mar;67(3):914-27 [PMID: 7358916]
  17. J Acoust Soc Am. 1981 Apr;69(4):1119-25 [PMID: 7229199]
  18. J Acoust Soc Am. 1982 Apr;71(4):946-9 [PMID: 7085982]
  19. J Acoust Soc Am. 1982 Dec;72(6):1788-803 [PMID: 7153426]
  20. J Acoust Soc Am. 1984 Aug;76(2):419-27 [PMID: 6480994]
  21. J Acoust Soc Am. 1984 Oct;76(4):1057-66 [PMID: 6501701]
  22. J Acoust Soc Am. 1986 May;79(5):1519-29 [PMID: 3711451]
  23. J Acoust Soc Am. 1987 May;81(5):1633-5 [PMID: 3584698]
  24. J Acoust Soc Am. 1987 Jun;81(6):1873-80 [PMID: 3611508]
  25. Hear Res. 1989 Oct;42(1):73-81 [PMID: 2584159]
  26. J Acoust Soc Am. 1990 Jul;88(1):141-8 [PMID: 2380442]
  27. Hear Res. 1990 Aug 1;47(1-2):103-38 [PMID: 2228789]
  28. Hear Res. 1990 Nov;49(1-3):225-46 [PMID: 2292498]
  29. J Speech Hear Res. 1991 Dec;34(6):1233-49 [PMID: 1787705]
  30. Hear Res. 1994 Mar;73(2):231-43 [PMID: 8188552]
  31. Hear Res. 1994 Aug;78(2):221-34 [PMID: 7982815]
  32. J Acoust Soc Am. 1996 Jun;99(6):3623-31 [PMID: 8655794]
  33. J Acoust Soc Am. 1996 Apr;99(4 Pt 1):2270-80 [PMID: 8730073]
  34. J Acoust Soc Am. 1997 Apr;101(4):2151-63 [PMID: 9104018]
  35. J Acoust Soc Am. 1997 May;101(5 Pt 1):2754-70 [PMID: 9165730]
  36. J Acoust Soc Am. 1997 Jun;101(6):3666-75 [PMID: 9193054]
  37. J Acoust Soc Am. 1997 Oct;102(4):2284-90 [PMID: 9348686]
  38. J Acoust Soc Am. 1997 Nov;102(5 Pt 1):2892-905 [PMID: 9373976]
  39. J Acoust Soc Am. 1998 Mar;103(3):1598-608 [PMID: 9514024]
  40. J Acoust Soc Am. 1998 May;103(5 Pt 1):2539-50 [PMID: 9604348]
  41. J Acoust Soc Am. 1998 Dec;104(6):3500-10 [PMID: 9857509]
  42. J Acoust Soc Am. 1999 Jan;105(1):326-38 [PMID: 9921659]

Grants

  1. R01 DC003909-05/NIDCD NIH HHS
  2. R01 DC003909/NIDCD NIH HHS
  3. R01 DC003687/NIDCD NIH HHS
  4. R01 DC 03909/NIDCD NIH HHS
  5. R01 DC 03687/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Adolescent
Adult
Cochlea
Ear, External
Ear, Middle
Female
Humans
Male
Models, Biological
Perceptual Masking
Pitch Discrimination
Pitch Perception
Psychoacoustics

Word Cloud

Created with Highcharts 10.0.0maskingusingsimultaneoustuningcochlearfilterforwardfrequencies10humanlevels18kHztestedsignalfixeddBabsolutethresholdconditionsstudiesearlierestimateslowdataAuditoryshapesderivedpsychophysicalmeasurementseightnormal-hearinglistenersvariantnotched-noisemethodbriefsignalsSignal246levelforward-maskingeither35simultaneous-maskingresultsshowequivalentrectangularbandwidthsERBssubstantiallynarrowerfoundpreviousFurthermorecontrastsharpnessdoublesrangegivingQERBvalues20respectivelyarguednewauditorybandwidthprovideaccurateestimatehigherthereforesuitablecomparisonspeciesmayalsoprovehelpfuldefiningparametersnonlinearmodelsprocessingEstimates

Similar Articles

Cited By