Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid.

Ryuichi Koga, Tsutomu Tsuchida, Takema Fukatsu
Author Information
  1. Ryuichi Koga: Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan.

Abstract

Almost all aphids harbour an endosymbiotic bacterium, Buchnera aphidicola, in bacteriocytes. Buchnera synthesizes essential nutrients and supports growth and reproduction of the host. Over the long history of endosymbiosis, many essential genes have been lost from the Buchnera genome, resulting in drastic genome reduction and the inability to live outside the host cells. In turn, when deprived of Buchnera, the host aphid suffers retarded growth and sterility. Buchnera and the host aphid are often referred to as highly integrated almost inseparable mutualistic partners. However, we discovered that, even after complete elimination of Buchnera, infection with a facultative endosymbiotic gamma-proteobacterium called pea aphid secondary symbiont (PASS) enabled survival and reproduction of the pea aphid. In the Buchnera-free aphid, PASS infected the cytoplasms of bacteriocytes that normally harbour Buchnera, establishing a novel endosymbiotic system. These results indicate that PASS can compensate for the essential role of Buchnera by physiologically and cytologically taking over the symbiotic niche. By contrast, PASS negatively affected the growth and reproduction of normal host aphids by suppressing the essential symbiont Buchnera. These findings illuminate complex symbiont-symbiont and host-symbiont interactions in an endosymbiotic system, and suggest a possible evolutionary route to novel obligate endosymbiosis by way of facultative endosymbiotic associations.

References

  1. Mol Ecol. 2002 Feb;11(2):167-80 [PMID: 11856419]
  2. Appl Environ Microbiol. 1998 Oct;64(10):3599-606 [PMID: 9758773]
  3. Annu Rev Entomol. 1998;43:17-37 [PMID: 15012383]
  4. Appl Environ Microbiol. 2000 Jul;66(7):2748-58 [PMID: 10877764]
  5. Curr Microbiol. 1997 Apr;34(4):220-5 [PMID: 9058541]
  6. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2918-23 [PMID: 11880639]
  7. J Bacteriol. 1989 Jun;171(6):2970-4 [PMID: 2470724]
  8. Appl Environ Microbiol. 2001 Mar;67(3):1284-91 [PMID: 11229923]
  9. Insect Biochem Mol Biol. 1996 Apr;26(4):383-8 [PMID: 8814785]
  10. J Mol Evol. 1999 Jun;48(6):717-22 [PMID: 10229576]
  11. Mol Ecol. 2002 Oct;11(10):2123-35 [PMID: 12296954]
  12. Mol Phylogenet Evol. 1992 Mar;1(1):26-30 [PMID: 1342920]
  13. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1803-7 [PMID: 12563031]
  14. Mol Ecol. 2001 Jan;10(1):217-28 [PMID: 11251800]
  15. Nature. 2001 May 17;411(6835):298-302 [PMID: 11357130]
  16. Nature. 2000 Sep 7;407(6800):81-6 [PMID: 10993077]
  17. J Insect Physiol. 1971 Oct;17(10):2035-50 [PMID: 4999588]

MeSH Term

Animals
Aphids
Base Sequence
Biological Evolution
Buchnera
DNA Primers
Ecosystem
Gammaproteobacteria
In Situ Hybridization
Molecular Sequence Data
Population Dynamics
Sequence Analysis, DNA
Symbiosis

Chemicals

DNA Primers

Word Cloud

Created with Highcharts 10.0.0BuchneraaphidendosymbioticessentialhostPASSgrowthreproductionfacultativeaphidsharbourbacteriocytesendosymbiosisgenomepartnerspeasymbiontnovelsystemcancompensateobligateendosymbiontAlmostbacteriumaphidicolasynthesizesnutrientssupportslonghistorymanygeneslostresultingdrasticreductioninabilityliveoutsidecellsturndeprivedsuffersretardedsterilityoftenreferredhighlyintegratedalmostinseparablemutualisticHoweverdiscoveredevencompleteeliminationinfectiongamma-proteobacteriumcalledsecondaryenabledsurvivalBuchnera-freeinfectedcytoplasmsnormallyestablishingresultsindicaterolephysiologicallycytologicallytakingsymbioticnichecontrastnegativelyaffectednormalsuppressingfindingsilluminatecomplexsymbiont-symbionthost-symbiontinteractionssuggestpossibleevolutionaryroutewayassociationsChangingsymbiosis:loss

Similar Articles

Cited By (126)