Expansion of protective CD8+ T-cell responses driven by recombinant cytomegaloviruses.

Urs Karrer, Markus Wagner, Sophie Sierro, Annette Oxenius, Hartmut Hengel, Tilman Dumrese, Stefan Freigang, Ulrich H Koszinowski, Rodney E Phillips, Paul Klenerman
Author Information
  1. Urs Karrer: Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom. urs.karrer@usz.ch

Abstract

CD8(+) T cells are critical for the control of many persistent viral infections, such as human immunodeficiency virus, hepatitis C virus, Epstein-Barr virus, and cytomegalovirus (CMV). In most infections, large CD8(+)-T-cell populations are induced early but then contract and are maintained thereafter at lower levels. In contrast, CD8(+) T cells specific for murine CMV (MCMV) have been shown to gradually accumulate after resolution of primary infection. This unique behavior is restricted to certain epitopes, including an immunodominant epitope derived from the immediate-early 1 (IE1) gene product. To explore the mechanism behind this further, we measured CD8(+)-T-cell-mediated immunity induced by recombinant MCMV-expressing epitopes derived from influenza A virus or lymphocytic choriomeningitis virus placed under the control of an IE promoter. We observed that virus-specific CD8(+)-T-cell populations were induced and that these expanded gradually over time. Importantly, these CD8(+) T cells provided long-term protection against challenge without boosting. These results demonstrate a unique pattern of accumulating T cells, which provide long-lasting immune protection, that is independent of the initial immunodominance of the epitope and indicates the potential of T-cell-inducing vaccines based on persistent vectors.

References

  1. Science. 1999 Nov 12;286(5443):1381-3 [PMID: 10558997]
  2. J Exp Med. 1994 Jan 1;179(1):185-93 [PMID: 8270864]
  3. Science. 1996 Oct 4;274(5284):94-6 [PMID: 8810254]
  4. J Virol. 2000 Sep;74(17):7861-8 [PMID: 10933693]
  5. Cell. 1989 Jul 28;58(2):305-15 [PMID: 2473842]
  6. J Exp Med. 1998 Sep 21;188(6):1047-54 [PMID: 9743523]
  7. J Exp Med. 1999 Nov 1;190(9):1285-96 [PMID: 10544200]
  8. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6313-8 [PMID: 11344265]
  9. Curr Protoc Immunol. 2001 Aug;Chapter 19:Unit 19.7 [PMID: 18432758]
  10. Science. 1999 Nov 12;286(5443):1377-81 [PMID: 10558996]
  11. J Virol. 1999 Aug;73(8):7056-60 [PMID: 10400809]
  12. Trends Microbiol. 2002 Jul;10(7):318-24 [PMID: 12110210]
  13. Eur J Immunol. 1989 Mar;19(3):417-24 [PMID: 2468501]
  14. Nature. 1989 Feb 16;337(6208):651-3 [PMID: 2465495]
  15. Science. 1996 Apr 5;272(5258):54-60 [PMID: 8600537]
  16. J Immunol. 1998 Dec 1;161(11):5791-4 [PMID: 9834052]
  17. Immunol Rev. 1999 Apr;168:187-97 [PMID: 10399075]
  18. J Infect Dis. 2002 Apr 15;185(8):1025-34 [PMID: 11930311]
  19. J Immunol. 1999 Jun 15;162(12):7569-77 [PMID: 10358214]
  20. Immunology. 1999 Nov;98(3):443-9 [PMID: 10583606]
  21. Lancet. 1974 Nov 30;2(7892):1288-90 [PMID: 4139526]
  22. J Immunol. 1999 Nov 15;163(10):5535-43 [PMID: 10553081]
  23. Nature. 1999 Oct 14;401(6754):708-12 [PMID: 10537110]
  24. Mech Ageing Dev. 2000 Dec 20;121(1-3):187-201 [PMID: 11164473]
  25. J Virol. 2001 Mar;75(6):2692-705 [PMID: 11222693]
  26. J Exp Med. 2000 Apr 3;191(7):1241-6 [PMID: 10748241]
  27. J Virol. 1999 Jan;73(1):482-94 [PMID: 9847354]
  28. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9716-23 [PMID: 8790397]
  29. Nature. 1989 Nov 30;342(6249):559-61 [PMID: 2573841]
  30. Trends Microbiol. 1998 May;6(5):190-7 [PMID: 9614343]
  31. Eur J Immunol. 1995 Dec;25(12):3256-62 [PMID: 8566009]
  32. J Immunol. 1998 Nov 15;161(10):5338-46 [PMID: 9820507]
  33. J Immunol. 2003 Feb 15;170(4):2022-9 [PMID: 12574372]
  34. Curr Opin Immunol. 1994 Apr;6(2):320-6 [PMID: 8011216]
  35. Vaccine. 2002 May 6;20(15):1913-7 [PMID: 11983244]
  36. J Exp Med. 2002 Sep 16;196(6):805-16 [PMID: 12235213]
  37. J Immunol. 1995 Jun 1;154(11):5870-5 [PMID: 7538535]
  38. Science. 2001 Nov 23;294(5547):1735-9 [PMID: 11721060]
  39. N Engl J Med. 2001 Mar 29;344(13):955-60 [PMID: 11274621]
  40. Nat Med. 2000 Apr;6(4):451-4 [PMID: 10742154]
  41. J Virol. 2000 Sep;74(17):8140-50 [PMID: 10933725]
  42. J Virol. 1988 May;62(5):1653-8 [PMID: 2833615]
  43. J Immunol. 1998 Jul 15;161(2):553-62 [PMID: 9670927]
  44. Clin Exp Immunol. 2003 Oct;134(1):9-12 [PMID: 12974748]
  45. J Exp Med. 2002 Mar 4;195(5):F19-23 [PMID: 11877490]
  46. J Gen Virol. 1991 Jul;72 ( Pt 7):1695-8 [PMID: 1677414]
  47. J Infect Dis. 2002 Jul 1;186(1):15-22 [PMID: 12089657]
  48. Clin Exp Immunol. 2001 Sep;125(3):432-9 [PMID: 11531951]
  49. J Immunol. 1991 Jun 15;146(12):4301-7 [PMID: 1710246]
  50. Nat Med. 2000 Apr;6(4):381-2 [PMID: 10742140]
  51. Nat Med. 2002 Apr;8(4):379-85 [PMID: 11927944]
  52. J Virol. 2002 Jan;76(1):151-64 [PMID: 11739681]
  53. Immunol Rev. 1999 Apr;168:167-76 [PMID: 10399073]
  54. J Immunol. 1947 Oct;57(2):179-94 [PMID: 20266867]
  55. J Virol. 2000 Dec;74(24):11495-503 [PMID: 11090146]
  56. Nat Immunol. 2003 Mar;4(3):225-34 [PMID: 12563257]
  57. Annu Rev Immunol. 1996;14:333-67 [PMID: 8717518]
  58. J Virol. 2002 Jun;76(12):6044-53 [PMID: 12021337]
  59. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):640-5 [PMID: 9012837]
  60. J Immunol. 1999 Jun 15;162(12):7080-7 [PMID: 10358151]
  61. Cell. 1986 Mar 28;44(6):959-68 [PMID: 2420472]
  62. J Virol. 1991 Mar;65(3):1638-43 [PMID: 1847480]

Grants

  1. /Wellcome Trust

MeSH Term

Animals
CD8-Positive T-Lymphocytes
Cytomegalovirus
Herpesviridae Infections
Immediate-Early Proteins
Immunodominant Epitopes
Mice
Mice, Inbred C57BL
Muromegalovirus
Orthomyxoviridae
Orthomyxoviridae Infections
Viral Proteins

Chemicals

IE1 protein, cytomegalovirus
Immediate-Early Proteins
Immunodominant Epitopes
Viral Proteins
cytomegalovirus immediate early phosphoprotein pp89

Word Cloud

Created with Highcharts 10.0.0CD8+virusTcellsinducedcontrolpersistentinfectionsCMV-T-cellpopulationsgraduallyuniqueepitopesepitopederivedrecombinantprotectioncriticalmanyviralhumanimmunodeficiencyhepatitisCEpstein-BarrcytomegaloviruslargeearlycontractmaintainedthereafterlowerlevelscontrastspecificmurineMCMVshownaccumulateresolutionprimaryinfectionbehaviorrestrictedcertainincludingimmunodominantimmediate-early1IE1geneproductexploremechanismbehindmeasured-T-cell-mediatedimmunityMCMV-expressinginfluenzalymphocyticchoriomeningitisplacedIEpromoterobservedvirus-specificexpandedtimeImportantlyprovidedlong-termchallengewithoutboostingresultsdemonstratepatternaccumulatingprovidelong-lastingimmuneindependentinitialimmunodominanceindicatespotentialT-cell-inducingvaccinesbasedvectorsExpansionprotectiveCD8+T-cellresponsesdrivencytomegaloviruses

Similar Articles

Cited By