Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice.

Christian A A von Hehn, Arin Bhattacharjee, Leonard K Kaczmarek
Author Information
  1. Christian A A von Hehn: Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Abstract

The promoter for the kv3.1 potassium channel gene is regulated by a Ca2+-cAMP responsive element, which binds the transcription factor cAMP response element-binding protein (CREB). Kv3.1 is expressed in a tonotopic gradient within the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, where Kv3.1 levels are highest at the medial end, which corresponds to high auditory frequencies. We have compared the levels of Kv3.1, CREB, and the phosphorylated form of CREB (pCREB) in a mouse strain that maintains good hearing throughout life, CBA/J (CBA), with one that suffers early cochlear hair cell loss, C57BL/6 (BL/6). A gradient of Kv3.1 immunoreactivity in the MNTB was detected in both young (6 week) and older (8 month) CBA mice. Although no gradient of CREB was detected, pCREB-immunopositive cells were grouped together in distinct clusters along the tonotopic axis. The same pattern of Kv3.1, CREB, and pCREB localization was also found in young BL/6 mice at a time (6 weeks) when hearing is normal. In contrast, at 8 months, when hearing is impaired, the gradient of Kv3.1 was abolished. Moreover, in the older BL/6 mice there was a decrease in CREB expression along the tonotopic axis, and the pattern of pCREB labeling appeared random, with no discrete clusters of pCREB-positive cells along the tonotopic axis. Our findings are consistent with the hypothesis that ongoing activity in auditory brainstem neurons is necessary for the maintenance of Kv3.1 tonotopicity through the CREB pathway.

References

  1. Exp Cell Res. 1999 Nov 25;253(1):180-5 [PMID: 10579922]
  2. Hear Res. 2000 Feb;140(1-2):77-90 [PMID: 10675636]
  3. Annu Rev Biochem. 1999;68:821-61 [PMID: 10872467]
  4. J Neurosci. 2001 Jan 15;21(2):485-94 [PMID: 11160428]
  5. J Comp Neurol. 2001 Aug 20;437(2):196-218 [PMID: 11494252]
  6. Audiology. 2001 Nov-Dec;40(6):313-21 [PMID: 11781044]
  7. Nat Rev Neurosci. 2002 Jan;3(1):53-64 [PMID: 11823805]
  8. Exp Neurol. 2002 May;175(1):226-44 [PMID: 12009775]
  9. Annu Rev Neurosci. 2002;25:51-101 [PMID: 12052904]
  10. Ageing Res Rev. 2002 Jun;1(3):331-43 [PMID: 12067590]
  11. Neuron. 2002 Aug 15;35(4):605-23 [PMID: 12194863]
  12. J Comp Neurol. 2002 Dec 16;454(3):241-54 [PMID: 12442315]
  13. J Speech Lang Hear Res. 2002 Dec;45(6):1249-61 [PMID: 12546491]
  14. J Neurosci. 2003 Feb 15;23(4):1133-41 [PMID: 12598601]
  15. Nat Rev Neurosci. 2003 Jul;4(7):540-50 [PMID: 12838329]
  16. Nat Genet. 2003 Sep;35(1):21-3 [PMID: 12910270]
  17. Hear Res. 2003 Sep;183(1-2):44-56 [PMID: 13679137]
  18. J Neurophysiol. 1992 Sep;68(3):756-66 [PMID: 1432046]
  19. J Neurosci. 2003 Nov 12;23(32):10445-53 [PMID: 14614103]
  20. J Comp Neurol. 1992 Jul 22;321(4):666-78 [PMID: 1506486]
  21. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3932-6 [PMID: 2023941]
  22. Behav Neurosci. 1988 Dec;102(6):881-6 [PMID: 3214538]
  23. Mol Cell Neurosci. 1995 Apr;6(2):168-83 [PMID: 7551568]
  24. Hear Res. 1994 Dec;81(1-2):11-21 [PMID: 7737919]
  25. J Neurosci. 1995 Jun;15(6):4298-314 [PMID: 7790912]
  26. Exp Brain Res. 1993;95(2):223-39 [PMID: 8224048]
  27. Endocrinology. 1993 Feb;132(2):770-80 [PMID: 8381074]
  28. J Biol Chem. 1996 Mar 8;271(10):5859-65 [PMID: 8621457]
  29. Brain Res Dev Brain Res. 1996 Feb 26;91(2):218-26 [PMID: 8852372]
  30. Cell. 1996 Dec 27;87(7):1203-14 [PMID: 8980227]
  31. J Acoust Soc Am. 1997 Jun;101(6):3546-53 [PMID: 9193043]
  32. J Comp Neurol. 1997 Sep 22;386(2):178-202 [PMID: 9295146]
  33. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1882-7 [PMID: 9465111]
  34. J Physiol. 1998 May 15;509 ( Pt 1):183-94 [PMID: 9547392]
  35. Science. 1998 Sep 4;281(5382):1505-9 [PMID: 9727976]
  36. J Neurosci. 1998 Nov 1;18(21):8758-69 [PMID: 9786983]
  37. J Neurochem. 1998 Nov;71(5):1865-74 [PMID: 9798910]

Grants

  1. P01 NS042202/NINDS NIH HHS
  2. R01 DC001919/NIDCD NIH HHS
  3. DC-01919/NIDCD NIH HHS
  4. NS42202/NINDS NIH HHS

MeSH Term

Acoustic Stimulation
Age Factors
Animals
Auditory Pathways
Brain Stem
Cerebellum
Cyclic AMP Response Element-Binding Protein
Disease Progression
Male
Mice
Mice, Inbred C57BL
Mice, Inbred CBA
Mice, Inbred DBA
Neurons
Neuropeptides
Phosphorylation
Potassium Channels
Potassium Channels, Voltage-Gated
Presbycusis
Reflex, Startle
Shaw Potassium Channels

Chemicals

Cyclic AMP Response Element-Binding Protein
Neuropeptides
Potassium Channels
Potassium Channels, Voltage-Gated
Shaw Potassium Channels

Word Cloud

Created with Highcharts 10.0.01Kv3CREBtonotopicgradientauditoryhearingmicepCREBBL/6alongaxiscAMPresponseelement-bindingproteinmedialMNTBbrainstemlevelsCBAdetectedyoung6older8cellsclusterspatternimpairedneuronstonotopicitypromoterkv3potassiumchannelgeneregulatedCa2+-cAMPresponsiveelementbindstranscriptionfactorexpressedwithinnucleustrapezoidbodyhighestendcorrespondshighfrequenciescomparedphosphorylatedformmousestrainmaintainsgoodthroughoutlifeCBA/JonesuffersearlycochlearhaircelllossC57BL/6immunoreactivityweekmonthAlthoughpCREB-immunopositivegroupedtogetherdistinctlocalizationalsofoundtimeweeksnormalcontrastmonthsabolishedMoreoverdecreaseexpressionlabelingappearedrandomdiscretepCREB-positivefindingsconsistenthypothesisongoingactivitynecessarymaintenancepathwayLossalterationssignalingcentral

Similar Articles

Cited By