Identification and handling of artifactual gene expression profiles emerging in microarray hybridization experiments.

Leonid Brodsky, Andrei Leontovich, Michael Shtutman, Elena Feinstein
Author Information
  1. Leonid Brodsky: Quark Biotech Inc./QBI Enterprises Ltd, Weizmann Science Park, POB 4071, Ness Ziona 70400 Israel. mbrodsky@actcom.co.il

Abstract

Mathematical methods of analysis of microarray hybridizations deal with gene expression profiles as elementary units. However, some of these profiles do not reflect a biologically relevant transcriptional response, but rather stem from technical artifacts. Here, we describe two technically independent but rationally interconnected methods for identification of such artifactual profiles. Our diagnostics are based on detection of deviations from uniformity, which is assumed as the main underlying principle of microarray design. Method 1 is based on detection of non-uniformity of microarray distribution of printed genes that are clustered based on the similarity of their expression profiles. Method 2 is based on evaluation of the presence of gene-specific microarray spots within the slides' areas characterized by an abnormal concentration of low/high differential expression values, which we define as 'patterns of differentials'. Applying two novel algorithms, for nested clustering (method 1) and for pattern detection (method 2), we can make a dual estimation of the profile's quality for almost every printed gene. Genes with artifactual profiles detected by method 1 may then be removed from further analysis. Suspicious differential expression values detected by method 2 may be either removed or weighted according to the probabilities of patterns that cover them, thus diminishing their input in any further data analysis.

References

  1. Methods Enzymol. 1999;303:179-205 [PMID: 10349646]
  2. Nat Genet. 1999 Jan;21(1 Suppl):51-5 [PMID: 9915502]
  3. Cell. 2000 Jul 7;102(1):9-15 [PMID: 10929708]
  4. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9834-9 [PMID: 10963655]
  5. Kidney Int. 2000 Dec;58(6):2351-66 [PMID: 11115069]
  6. J Mol Graph Model. 2000 Aug-Oct;18(4-5):368-82 [PMID: 11143556]
  7. Cold Spring Harb Symp Quant Biol. 1999;64:71-8 [PMID: 11232339]
  8. Nucleic Acids Res. 2001 Jun 15;29(12):2549-57 [PMID: 11410663]
  9. Nucleic Acids Res. 2001 Aug 1;29(15):E72-2 [PMID: 11470887]
  10. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15149-54 [PMID: 11742071]
  11. J Cell Physiol. 2002 Apr;191(1):42-50 [PMID: 11920680]
  12. Bioinformatics. 2002 Sep;18(9):1207-15 [PMID: 12217912]
  13. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12975-8 [PMID: 12235357]
  14. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14031-6 [PMID: 12388780]
  15. Nucleic Acids Res. 2002 Nov 1;30(21):e116 [PMID: 12409475]
  16. Bioinformatics. 2002 Nov;18(11):1540-1 [PMID: 12424128]
  17. Bioinformatics. 2002 Dec;18(12):1609-16 [PMID: 12490445]
  18. Blood. 2003 Mar 15;101(6):2253-60 [PMID: 12411310]
  19. Nucleic Acids Res. 2003 May 1;31(9):e52 [PMID: 12711697]
  20. Bioinformatics. 2003 May 1;19(7):803-10 [PMID: 12724289]
  21. Nat Genet. 2003 Jun;34(2):166-76 [PMID: 12740579]
  22. Neural Netw. 2003 Jun-Jul;16(5-6):633-40 [PMID: 12850017]
  23. Behav Sci. 1967 Mar;12(2):153-5 [PMID: 6030099]
  24. J Invest Dermatol. 1991 Oct;97(4):634-7 [PMID: 1940433]
  25. Biochem Mol Biol Int. 1994 Oct;34(3):639-44 [PMID: 7833842]
  26. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10614-9 [PMID: 8855227]
  27. Nat Genet. 1999 Jan;21(1 Suppl):33-7 [PMID: 9915498]
  28. Science. 1999 Oct 15;286(5439):531-7 [PMID: 10521349]

MeSH Term

Algorithms
Artifacts
Gene Expression Profiling
Gene Library
Oligonucleotide Array Sequence Analysis
Probability
Quality Control
Reproducibility of Results

Word Cloud

Created with Highcharts 10.0.0profilesmicroarrayexpressionbasedmethodanalysisgeneartifactualdetection12methodstwoMethodprinteddifferentialvaluesdetectedmayremovedMathematicalhybridizationsdealelementaryunitsHoweverreflectbiologicallyrelevanttranscriptionalresponseratherstemtechnicalartifactsdescribetechnicallyindependentrationallyinterconnectedidentificationdiagnosticsdeviationsuniformityassumedmainunderlyingprincipledesignnon-uniformitydistributiongenesclusteredsimilarityevaluationpresencegene-specificspotswithinslides'areascharacterizedabnormalconcentrationlow/highdefine'patternsdifferentials'Applyingnovelalgorithmsnestedclusteringpatterncanmakedualestimationprofile'squalityalmosteveryGenesSuspiciouseitherweightedaccordingprobabilitiespatternscoverthusdiminishinginputdataIdentificationhandlingemerginghybridizationexperiments

Similar Articles

Cited By