Targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia.

Jong-Min Lee, Kaimin Chan, Yuet Wai Kan, Jeffrey A Johnson
Author Information
  1. Jong-Min Lee: School of Pharmacy, Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, USA.

Abstract

A basic leucine zipper transcription factor, NF-E2-related factor 2 (Nrf2), plays a critical role in the cellular defense mechanism by mediating a coordinate up-regulation of antioxidant responsive element-driven detoxification and antioxidant genes. Here, we report that targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia due to increased sequestration of damaged erythrocytes. Splenomegaly and spleen toxicity in Nrf2(-/-) mice raised a possibility of hemolytic anemia and splenic extramedullary hematopoiesis in Nrf2(-/-) mice. In support of this, hematology analysis revealed that Nrf2(-/-) mice suffer from anemia with abnormal red cell morphologies (i.e., Howell-Jolly bodies, acantocytes, and schistocytes). In addition, Nrf2(-/-) erythrocytes were more sensitive to H(2)O(2)-induced hemolysis, and erythrocyte-bound IgG levels were markedly increased in Nrf2(-/-) mice compared with Nrf2(+/+) mice. Because IgG bound to erythrocytes in the presence of oxidative damage in erythrocytes (regardless of Nrf2 genotype), these data support that Nrf2(-/-) erythrocytes have higher levels of damage compared with Nrf2(+/+) cells. Finally, Nrf2(-/-) mice showed increased levels of erythrocyte-bound IgG compared with Nrf2(+/+) mice after H(2)O(2) injection in vivo, suggesting that the decreased glutathione and increased H(2)O(2) render the Nrf2(-/-) mice more susceptible to toxicity. Taken together, these observations indicate that a chronic increase in oxidative stress due to decreased antioxidant capacity sensitizes erythrocytes and causes hemolytic anemia in Nrf2(-/-) mice, suggesting a pivotal role of Nrf2-antioxidant responsive element pathway in the cellular antioxidant defense system.

References

  1. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12731-6 [PMID: 10535991]
  2. J Neurosci. 2003 Apr 15;23(8):3394-406 [PMID: 12716947]
  3. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4611-6 [PMID: 11287661]
  4. Kidney Int. 2001 Oct;60(4):1343-53 [PMID: 11576348]
  5. J Biol Chem. 2002 Jan 4;277(1):388-94 [PMID: 11687587]
  6. Am J Respir Cell Mol Biol. 2002 Feb;26(2):175-82 [PMID: 11804867]
  7. Cancer Res. 2002 Sep 15;62(18):5196-203 [PMID: 12234984]
  8. Oncogene. 2003 Feb 13;22(6):797-806 [PMID: 12584558]
  9. J Biol Chem. 2003 Apr 4;278(14):12029-38 [PMID: 12556532]
  10. Mol Cell Biol. 2003 Jul;23(13):4673-86 [PMID: 12808106]
  11. Genes Dev. 2003 Aug 1;17(15):1882-93 [PMID: 12869585]
  12. J Biol Chem. 2003 Sep 26;278(39):37948-56 [PMID: 12842875]
  13. Mol Cell Biol. 2003 Oct;23(20):7198-209 [PMID: 14517290]
  14. DNA Cell Biol. 2003 Aug;22(8):479-87 [PMID: 14565864]
  15. J Biol Chem. 2003 Nov 28;278(48):48021-9 [PMID: 12968018]
  16. Oncogene. 2003 Dec 18;22(58):9275-81 [PMID: 14681686]
  17. J Neurosci. 2004 Feb 4;24(5):1101-12 [PMID: 14762128]
  18. Anal Biochem. 1969 Mar;27(3):502-22 [PMID: 4388022]
  19. Anal Biochem. 1988 Mar;169(2):328-36 [PMID: 3382006]
  20. J Biol Chem. 1991 Jun 25;266(18):11632-9 [PMID: 1646813]
  21. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9926-30 [PMID: 7937919]
  22. Mol Cell Biol. 1995 Aug;15(8):4640-7 [PMID: 7623856]
  23. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8690-4 [PMID: 7567998]
  24. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11499-503 [PMID: 8876164]
  25. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13943-8 [PMID: 8943040]
  26. EMBO J. 1997 Sep 15;16(18):5654-61 [PMID: 9312024]
  27. EMBO J. 1998 Mar 16;17(6):1779-87 [PMID: 9501099]
  28. J Neurochem. 1998 Jul;71(1):69-77 [PMID: 9648852]
  29. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14875-9 [PMID: 9843983]
  30. Cell Death Differ. 1999 Sep;6(9):865-72 [PMID: 10510468]
  31. Blood. 1999 Nov 1;94(9):3037-47 [PMID: 10556187]

Grants

  1. R37 DK016666/NIDDK NIH HHS
  2. DK16666/NIDDK NIH HHS
  3. R01 ES008089/NIEHS NIH HHS
  4. R01 DK016666/NIDDK NIH HHS
  5. R29 ES008089/NIEHS NIH HHS
  6. R01 ES010042/NIEHS NIH HHS
  7. ES10042/NIEHS NIH HHS
  8. ES08089/NIEHS NIH HHS

MeSH Term

Anemia, Hemolytic, Autoimmune
Animals
Antioxidants
Cell Size
DNA-Binding Proteins
Erythrocytes
Gene Deletion
Gene Expression Regulation
Genotype
Hemolysis
Hydrogen Peroxide
Immunoglobulin G
Mice
Mice, Knockout
NF-E2-Related Factor 2
Oxidative Stress
Phenotype
Response Elements
Spleen
Splenomegaly
Tooth
Trans-Activators

Chemicals

Antioxidants
DNA-Binding Proteins
Immunoglobulin G
NF-E2-Related Factor 2
Nfe2l2 protein, mouse
Trans-Activators
Hydrogen Peroxide

Word Cloud

Created with Highcharts 10.0.0Nrf2-/-mice2erythrocytesanemiaantioxidanthemolyticincreasedcausesHOIgGlevelscompared+/+factorrolecellulardefenseresponsivedisruptionregenerativeimmune-mediatedduetoxicitysupporterythrocyte-boundoxidativedamagesuggestingdecreasedbasicleucinezippertranscriptionNF-E2-relatedplayscriticalmechanismmediatingcoordinateup-regulationelement-drivendetoxificationgenesreporttargetedsequestrationdamagedSplenomegalyspleenraisedpossibilitysplenicextramedullaryhematopoiesishematologyanalysisrevealedsufferabnormalredcellmorphologiesieHowell-Jollybodiesacantocytesschistocytesadditionsensitive-inducedhemolysismarkedlyboundpresenceregardlessgenotypedatahighercellsFinallyshowedinjectionvivoglutathionerendersusceptibleTakentogetherobservationsindicatechronicincreasestresscapacitysensitizespivotalNrf2-antioxidantelementpathwaysystemTargeted

Similar Articles

Cited By (63)