Activation of chaperone-mediated autophagy during oxidative stress.

Roberta Kiffin, Christopher Christian, Erwin Knecht, Ana Maria Cuervo
Author Information
  1. Roberta Kiffin: Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 1046, USA.

Abstract

Oxidatively damaged proteins accumulate with age in almost all cell types and tissues. The activity of chaperone-mediated autophagy (CMA), a selective pathway for the degradation of cytosolic proteins in lysosomes, decreases with age. We have analyzed the possible participation of CMA in the removal of oxidized proteins in rat liver and cultured mouse fibroblasts. Added to the fact that CMA substrates, when oxidized, are more efficiently internalized into lysosomes, we have found a constitutive activation of CMA during oxidative stress. Oxidation-induced activation of CMA correlates with higher levels of several components of the lysosomal translocation complex, but in particular of the lumenal chaperone, required for substrate uptake, and of the lysosomal membrane protein (lamp) type 2a, previously identified as a receptor for this pathway. In contrast with the well characterized mechanism of CMA activation during nutritional stress, which does not require de novo synthesis of the receptor, oxidation-induced activation of CMA is attained through transcriptional up-regulation of lamp2a. We conclude that CMA is activated during oxidative stress and that the higher activity of this pathway under these conditions, along with the higher susceptibility of the oxidized proteins to be taken up by lysosomes, both contribute to the efficient removal of oxidized proteins.

References

  1. Free Radic Biol Med. 2002 Oct 1;33(7):894-906 [PMID: 12361801]
  2. Biochimie. 2001 Mar-Apr;83(3-4):301-10 [PMID: 11295490]
  3. J Biol Chem. 1997 Feb 28;272(9):5606-15 [PMID: 9038169]
  4. J Biol Chem. 1985 Jan 10;260(1):300-5 [PMID: 2856920]
  5. J Lipid Res. 1993 Nov;34(11):1919-29 [PMID: 8263416]
  6. Mol Cell Biochem. 2004 Aug;263(1):55-72 [PMID: 27520665]
  7. J Biol Chem. 1993 May 15;268(14):10463-70 [PMID: 8486700]
  8. J Biol Chem. 2000 Oct 6;275(40):31505-13 [PMID: 10806201]
  9. J Biol Chem. 2000 Sep 1;275(35):27447-56 [PMID: 10862611]
  10. Int J Biochem Cell Biol. 2004 Dec;36(12):2420-34 [PMID: 15325582]
  11. Protein Sci. 2002 Apr;11(4):831-40 [PMID: 11910026]
  12. Exp Gerontol. 2000 Sep;35(6-7):779-86 [PMID: 11053668]
  13. FASEB J. 1997 Jun;11(7):526-34 [PMID: 9212076]
  14. Biochem J. 2003 Oct 1;375(Pt 1):75-86 [PMID: 12841850]
  15. J Neurochem. 2003 Jul;86(2):489-97 [PMID: 12871590]
  16. Free Radic Biol Med. 1995 Nov;19(5):565-74 [PMID: 8529915]
  17. Clin Toxicol. 1979;14(1):1-46 [PMID: 373975]
  18. FASEB J. 2000 Dec;14(15):2495-502 [PMID: 11099467]
  19. Traffic. 2000 Jul;1(7):570-83 [PMID: 11208145]
  20. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  21. Antioxid Redox Signal. 2002 Oct;4(5):769-81 [PMID: 12470504]
  22. Free Radic Biol Med. 2002 Jul 1;33(1):29-36 [PMID: 12086679]
  23. J Biol Chem. 1993 Nov 5;268(31):23490-5 [PMID: 8226876]
  24. Kidney Int. 1999 Feb;55(2):529-45 [PMID: 9987077]
  25. Methods Enzymol. 1990;182:203-25 [PMID: 2156127]
  26. Free Radic Biol Med. 2001 Jun 1;30(11):1243-53 [PMID: 11368922]
  27. Biogerontology. 2000;1(1):31-40 [PMID: 11707918]
  28. Ann N Y Acad Sci. 2000 Jun;908:143-54 [PMID: 10911955]
  29. ScientificWorldJournal. 2002 Jan 29;2:248-54 [PMID: 12806056]
  30. FASEB J. 2000 Dec;14(15):2503-10 [PMID: 11099468]
  31. J Cell Biol. 1978 Aug;78(2):349-68 [PMID: 211139]
  32. Free Radic Biol Med. 1995 Dec;19(6):813-22 [PMID: 8582654]
  33. J Cell Sci. 2001 Jul;114(Pt 13):2491-9 [PMID: 11559757]
  34. Arch Biochem Biophys. 2002 Jan 15;397(2):407-13 [PMID: 11795901]
  35. J Cell Biol. 1997 May 19;137(4):825-34 [PMID: 9151685]
  36. Mech Ageing Dev. 2001 May 31;122(7):595-615 [PMID: 11322989]
  37. Biol Chem. 2002 Mar-Apr;383(3-4):559-67 [PMID: 12033444]
  38. J Neurochem. 2002 Aug;82(3):538-49 [PMID: 12153478]
  39. Am J Physiol. 1995 Nov;269(5 Pt 1):C1200-8 [PMID: 7491910]
  40. Int J Biochem Cell Biol. 2002 Nov;34(11):1461-74 [PMID: 12200039]
  41. Cancer Lett. 2002 Jun 6;180(1):69-74 [PMID: 11911972]
  42. Int J Biochem Cell Biol. 2003 May;35(5):685-97 [PMID: 12672460]
  43. J Gerontol A Biol Sci Med Sci. 2001 Sep;56(9):B375-83 [PMID: 11524438]
  44. J Cell Physiol. 1999 Jan;178(1):17-27 [PMID: 9886486]
  45. J Biol Chem. 1988 May 15;263(14):6797-805 [PMID: 3360807]
  46. Mol Biol Cell. 1998 Aug;9(8):1995-2010 [PMID: 9693362]
  47. J Exp Zool. 1998 Sep-Oct 1;282(1-2):18-27 [PMID: 9723162]
  48. J Biol Chem. 1995 Feb 3;270(5):2344-51 [PMID: 7836468]
  49. FEBS Lett. 2003 May 8;542(1-3):89-94 [PMID: 12729904]
  50. Front Biosci. 1998 Jan 01;3:d25-43 [PMID: 9407152]
  51. Biofactors. 1997;6(2):165-72 [PMID: 9259998]
  52. Biochem J. 1991 Apr 1;275 ( Pt 1):165-9 [PMID: 2018472]
  53. J Mol Med (Berl). 1998 Jan;76(1):6-12 [PMID: 9462863]
  54. Science. 1996 Jul 26;273(5274):501-3 [PMID: 8662539]
  55. Science. 1989 Oct 20;246(4928):382-5 [PMID: 2799391]
  56. J Cell Sci. 2000 Dec;113 Pt 24:4441-50 [PMID: 11082038]
  57. Ageing Res Rev. 2002 Apr;1(2):279-93 [PMID: 12039443]
  58. Free Radic Biol Med. 2002 Jul 15;33(2):259-65 [PMID: 12106821]
  59. Methods Enzymol. 1983;91:570-9 [PMID: 6855602]
  60. J Gerontol A Biol Sci Med Sci. 1999 Aug;54(8):B318-23 [PMID: 10496537]
  61. J Biol Chem. 1994 Oct 21;269(42):26374-80 [PMID: 7929357]
  62. Eukaryot Cell. 2002 Feb;1(1):11-21 [PMID: 12455967]
  63. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 [PMID: 388439]
  64. EMBO J. 2003 Jan 2;22(1):47-59 [PMID: 12505983]
  65. Cell Cycle. 2003 Nov-Dec;2(6):585-90 [PMID: 14512774]
  66. Gerontology. 1995;41 Suppl 2:319-26 [PMID: 8821342]
  67. Free Radic Biol Med. 1997;23(2):215-25 [PMID: 9199883]
  68. J Biochem. 1983 Feb;93(2):547-56 [PMID: 6841352]
  69. J Biol Chem. 2001 Jun 1;276(22):19126-31 [PMID: 11262416]
  70. Mol Med. 2003 Mar-Apr;9(3-4):65-76 [PMID: 12865942]
  71. J Biol Chem. 2003 Jan 3;278(1):311-8 [PMID: 12401807]
  72. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]
  73. Redox Rep. 2001;6(6):343-9 [PMID: 11865974]
  74. Prog Mol Subcell Biol. 2002;29:35-42 [PMID: 11908071]
  75. Arch Biochem Biophys. 1990 Apr;278(1):26-34 [PMID: 1969723]
  76. Ann N Y Acad Sci. 2001 Apr;928:22-38 [PMID: 11795513]
  77. Trends Cell Biol. 2004 Feb;14(2):70-7 [PMID: 15102438]

Grants

  1. R01 AG021904/NIA NIH HHS
  2. R37 AG021904/NIA NIH HHS
  3. AG-021904/NIA NIH HHS

MeSH Term

Animals
Autophagy
Cytosol
Fibroblasts
Immunohistochemistry
Liver
Lysosomes
Male
Mice
Microscopy, Fluorescence
Molecular Chaperones
Oxidative Stress
Oxygen
RNA, Messenger
Rats
Rats, Wistar
Ribonuclease, Pancreatic
Time Factors
Transcription, Genetic
Up-Regulation

Chemicals

Molecular Chaperones
RNA, Messenger
Ribonuclease, Pancreatic
Oxygen

Word Cloud

Created with Highcharts 10.0.0CMAproteinsoxidizedactivationstresspathwaylysosomesoxidativehigherageactivitychaperone-mediatedautophagyremovallysosomalreceptorOxidativelydamagedaccumulatealmostcelltypestissuesselectivedegradationcytosolicdecreasesanalyzedpossibleparticipationratliverculturedmousefibroblastsAddedfactsubstratesefficientlyinternalizedfoundconstitutiveOxidation-inducedcorrelateslevelsseveralcomponentstranslocationcomplexparticularlumenalchaperonerequiredsubstrateuptakemembraneproteinlamptype2apreviouslyidentifiedcontrastwellcharacterizedmechanismnutritionalrequiredenovosynthesisoxidation-inducedattainedtranscriptionalup-regulationlamp2aconcludeactivatedconditionsalongsusceptibilitytakencontributeefficientActivation

Similar Articles

Cited By