Evolution of human immunodeficiency virus type 1 coreceptor usage during antiretroviral Therapy: a Bayesian approach.

Christina M R Kitchen, Sean Philpott, Harold Burger, Barbara Weiser, Kathryn Anastos, Marc A Suchard
Author Information
  1. Christina M R Kitchen: Department of Biostatistics, UCLA School of Public Health, Los Angeles, CA 90095-1772. cr@ucla.edu

Abstract

There is substantial evidence for ongoing replication and evolution of human immunodeficiency virus type 1 (HIV-1), even in individuals receiving highly active antiretroviral therapy. Viral evolution in the presence of antiviral therapy needs to be considered when developing new therapeutic strategies. Phylogenetic analyses of HIV-1 sequences can be used for this purpose but may give rise to misleading results if rates of intrapatient evolution differ significantly. To improve analyses of HIV-1 evolution relevant to studies of pathogenesis and treatment, we developed a Bayesian hierarchical model that incorporates all available sequence data while simultaneously allowing the phylogenetic parameters of each patient to vary. We used this method to examine evolutionary changes in HIV-1 coreceptor usage in response to treatment. We examined patients whose viral populations exhibited a shift in coreceptor utilization in response to therapy. CXCR4 (X4) strains emerged in each patient but were suppressed following initiation of new antiretroviral regimens, so that CCR5-utilizing (R5) strains predominated. By phylogenetically reconstructing the evolutionary relationship of HIV-1 obtained longitudinally from each patient, it was possible to examine the origin of the reemergent R5 virus. Using our Bayesian hierarchical approach, we found that the reemergent R5 virus detectable after therapy was more closely related to the predecessor R5 virus than to the X4 strains. The Bayesian hierarchical approach, unlike more traditional methods, makes it possible to evaluate competing hypotheses across patients. This model is not limited to analyses of HIV-1 but can be used to elucidate evolutionary processes for other organisms as well.

Associated Data

GENBANK | AY322081; AY322082; AY322083; AY322084; AY322085; AY322086; AY322087; AY322088; AY322089; AY322090; AY322091; AY322092; AY322093; AY322094; AY322095; AY322096; AY322097; AY322098; AY322099; AY322100; AY322101; AY322102; AY322103; AY322104; AY322105; AY322106

References

  1. Ann Intern Med. 1997 Nov 15;127(10):882-90 [PMID: 9382366]
  2. Biometrics. 1997 Jun;53(2):592-602 [PMID: 9192454]
  3. J Infect Dis. 1999 Jan;179(1):254-8 [PMID: 9841850]
  4. J Virol Methods. 1998 Dec;76(1-2):139-48 [PMID: 9923748]
  5. N Engl J Med. 1999 May 27;340(21):1605-13 [PMID: 10341272]
  6. N Engl J Med. 1999 May 27;340(21):1614-22 [PMID: 10341273]
  7. J Virol. 1999 Jul;73(7):6191-6 [PMID: 10364382]
  8. Ann Intern Med. 1999 Jun 15;130(12):1005-13 [PMID: 10383350]
  9. J Virol. 1999 Dec;73(12):10489-502 [PMID: 10559367]
  10. J Infect Dis. 2000 Mar;181(3):946-53 [PMID: 10720517]
  11. Ann Intern Med. 2000 Sep 19;133(6):401-10 [PMID: 10975957]
  12. J Clin Invest. 2001 Feb;107(4):431-8 [PMID: 11181642]
  13. Mol Biol Evol. 2001 Jun;18(6):1001-13 [PMID: 11371589]
  14. Virology. 2001 Jun 5;284(2):250-8 [PMID: 11384224]
  15. Ann Intern Med. 2001 Jul 3;135(1):17-26 [PMID: 11434728]
  16. Science. 2001 Dec 14;294(5550):2310-4 [PMID: 11743192]
  17. J Virol. 2002 Jan;76(2):707-16 [PMID: 11752161]
  18. Syst Biol. 2003 Feb;52(1):48-54 [PMID: 12554439]
  19. Nat Rev Genet. 2003 Apr;4(4):275-84 [PMID: 12671658]
  20. J Virol. 2003 May;77(9):5540-6 [PMID: 12692259]
  21. Syst Biol. 2003 Oct;52(5):649-64 [PMID: 14530132]
  22. Lancet. 2003 Oct 18;362(9392):1267-74 [PMID: 14575971]
  23. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12972-7 [PMID: 14557540]
  24. J Acquir Immune Defic Syndr. 1989;2(4):344-52 [PMID: 2754611]
  25. Cell. 1989 Sep 8;58(5):901-10 [PMID: 2550139]
  26. Mol Biol Evol. 1993 May;10(3):512-26 [PMID: 8336541]
  27. Mol Biol Evol. 1994 Mar;11(2):316-24 [PMID: 8170371]
  28. J Mol Evol. 1994 Sep;39(3):306-14 [PMID: 7932792]
  29. J Exp Med. 1997 Feb 17;185(4):621-8 [PMID: 9034141]
  30. Nat Med. 1997 Nov;3(11):1259-65 [PMID: 9359702]

Grants

  1. U01 AI 35004/NIAID NIH HHS
  2. R01 GM 068955/NIGMS NIH HHS
  3. AI 28697/NIAID NIH HHS
  4. U01 AI035004/NIAID NIH HHS
  5. R01 GM068955/NIGMS NIH HHS
  6. P30 AI028697/NIAID NIH HHS

MeSH Term

Antiretroviral Therapy, Highly Active
Bayes Theorem
Evolution, Molecular
Female
HIV Infections
HIV-1
Humans
Molecular Sequence Data
Phylogeny
Receptors, CCR5
Receptors, CXCR4
Sequence Analysis, DNA

Chemicals

Receptors, CCR5
Receptors, CXCR4

Word Cloud

Created with Highcharts 10.0.0HIV-1virusevolutiontherapyBayesianR5antiretroviralanalysesusedhierarchicalpatientevolutionarycoreceptorstrainsapproachhumanimmunodeficiencytype1newcantreatmentmodelexamineusageresponsepatientsX4possiblereemergentsubstantialevidenceongoingreplicationevenindividualsreceivinghighlyactiveViralpresenceantiviralneedsconsidereddevelopingtherapeuticstrategiesPhylogeneticsequencespurposemaygiverisemisleadingresultsratesintrapatientdiffersignificantlyimproverelevantstudiespathogenesisdevelopedincorporatesavailablesequencedatasimultaneouslyallowingphylogeneticparametersvarymethodchangesexaminedwhoseviralpopulationsexhibitedshiftutilizationCXCR4emergedsuppressedfollowinginitiationregimensCCR5-utilizingpredominatedphylogeneticallyreconstructingrelationshipobtainedlongitudinallyoriginUsingfounddetectablecloselyrelatedpredecessorunliketraditionalmethodsmakesevaluatecompetinghypothesesacrosslimitedelucidateprocessesorganismswellEvolutionTherapy:

Similar Articles

Cited By (11)