Parametric inference for biological sequence analysis.

Lior Pachter, Bernd Sturmfels
Author Information
  1. Lior Pachter: Department of Mathematics, University of California, Berkeley, CA 94720, USA. lpachter@math.berkeley.edu

Abstract

One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

References

  1. Nature. 2001 Feb 15;409(6822):860-921 [PMID: 11237011]
  2. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3740-5 [PMID: 11891299]
  3. Genome Res. 2003 Mar;13(3):496-502 [PMID: 12618381]
  4. Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16132-7 [PMID: 15534224]
  5. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6090-3 [PMID: 1631095]
  6. Methods Enzymol. 1996;266:481-94 [PMID: 8743701]
  7. J Mol Biol. 1987 Jul 20;196(2):261-82 [PMID: 3656447]

Grants

  1. R01 HG002362/NHGRI NIH HHS
  2. R01-HG02362-02/NHGRI NIH HHS

MeSH Term

Algorithms
Markov Chains
Models, Statistical
Sequence Alignment
Sequence Analysis
Sequence Analysis, DNA

Word Cloud

Created with Highcharts 10.0.0modelsalgorithmgraphicalinferencemodelbiologicalproblemshiddenMarkovsum-productpolytopeOnemajorsuccessescomputationalbiologyunificationusingformalismmultitudealgorithmsannotatingcomparingsequencesGraphicalappliedincludeannotationtreephylogeneticspairalignmentsinglesolvesmanyassociateddifferentstatisticalarticleintroducespropagationcomputingNewtonobservationgeometricversionusedanalyzeparametricbehaviormaximumposterioricalculationsParametricsequenceanalysis

Similar Articles

Cited By (4)