Genetic interaction between Rb and K-ras in the control of differentiation and tumor suppression.

Chiaki Takahashi, Bernardo Contreras, Roderick T Bronson, Massimo Loda, Mark E Ewen
Author Information
  1. Chiaki Takahashi: Department of Medial Oncology, Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA.

Abstract

Although the retinoblastoma protein (pRb) has been implicated in the processes of cellular differentiation, there is no compelling genetic or in vivo evidence that such activities contribute to pRb-mediated tumor suppression. Motivated by cell culture studies suggesting that Ras is a downstream effector of pRb in the control of differentiation, we have examined the tumor and developmental phenotypes of Rb and K-ras double-knockout mice. We find that heterozygosity for K-ras (i) rescued a unique subset of developmental defects that characterize Rb-deficient embryos by affecting differentiation but not proliferation and (ii) significantly enhanced the degree of differentiation of pituitary adenocarcinomas arising in Rb heterozygotes, leading to their prolonged survival. These observations suggest that Rb and K-ras function together in vivo, in the contexts of both embryonic and tumor development, and that the ability to affect differentiation is a major facet of the tumor suppressor function of pRb.

References

  1. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10826-31 [PMID: 10995476]
  2. Mol Cell Biol. 1999 Nov;19(11):7724-32 [PMID: 10523661]
  3. Genes Dev. 2001 Feb 15;15(4):386-91 [PMID: 11230146]
  4. J Biol Chem. 2001 Apr 27;276(17):13762-70 [PMID: 11279017]
  5. Mol Cell. 2001 Aug;8(2):303-16 [PMID: 11545733]
  6. J Cell Biochem. 2001 Aug 21-Sep 5;83(3):414-25 [PMID: 11596110]
  7. Cell Growth Differ. 2002 May;13(5):215-25 [PMID: 12065245]
  8. J Biol Chem. 2002 Jul 19;277(29):26335-9 [PMID: 12000769]
  9. Mol Cell Biol. 2003 Feb;23(3):1044-53 [PMID: 12529408]
  10. Nat Rev Cancer. 2003 Feb;3(2):89-101 [PMID: 12563308]
  11. Nature. 2003 Feb 27;421(6926):942-7 [PMID: 12607001]
  12. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6546-51 [PMID: 12732721]
  13. Mol Cell Biol. 2003 Aug;23(15):5256-68 [PMID: 12861012]
  14. Mol Cell Biol. 2003 Sep;23(18):6542-52 [PMID: 12944480]
  15. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6177-81 [PMID: 1352883]
  16. Nature. 1992 Sep 24;359(6393):288-94 [PMID: 1406932]
  17. Nature. 1992 Sep 24;359(6393):295-300 [PMID: 1406933]
  18. Nature. 1992 Sep 24;359(6393):328-30 [PMID: 1406937]
  19. Cell. 1993 Feb 12;72(3):309-24 [PMID: 8381715]
  20. Am J Hum Genet. 1993 Jun;52(6):1122-8 [PMID: 8099255]
  21. Biochim Biophys Acta. 1993 May 25;1155(1):43-61 [PMID: 8504130]
  22. Oncogene. 1994 Apr;9(4):1021-7 [PMID: 8134105]
  23. Oncogene. 1994 May;9(5):1321-6 [PMID: 8152792]
  24. Hum Genet. 1994 Oct;94(4):349-54 [PMID: 7927327]
  25. Nat Genet. 1994 Aug;7(4):480-4 [PMID: 7951317]
  26. Nature. 1995 Apr 6;374(6522):562-5 [PMID: 7700385]
  27. Oncogene. 1995 Apr 20;10(8):1615-20 [PMID: 7731716]
  28. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):465-9 [PMID: 8552662]
  29. Oncogene. 1996 May 16;12(10):2137-46 [PMID: 8668339]
  30. J Cell Biol. 1996 Oct;135(2):441-56 [PMID: 8896600]
  31. Nat Med. 1996 Dec;2(12):1316-21 [PMID: 8946829]
  32. Genes Dev. 1996 Nov 1;10(21):2794-804 [PMID: 8946919]
  33. Genes Dev. 1996 Dec 1;10(23):3051-64 [PMID: 8957005]
  34. Curr Biol. 1997 Mar 1;7(3):219-21 [PMID: 9395436]
  35. Nature. 1997 Mar 13;386(6621):177-81 [PMID: 9062190]
  36. Nature. 1997 May 22;387(6631):422-6 [PMID: 9163430]
  37. Cell Growth Differ. 1997 Aug;8(8):891-901 [PMID: 9269898]
  38. Oncogene. 1997 Sep 4;15(10):1151-9 [PMID: 9294608]
  39. Genes Dev. 1997 Oct 1;11(19):2468-81 [PMID: 9334313]
  40. Genes Dev. 1998 Jan 1;12(1):95-106 [PMID: 9420334]
  41. J Biol Chem. 1998 Jan 16;273(3):1782-7 [PMID: 9430727]
  42. Nat Genet. 1998 Apr;18(4):360-4 [PMID: 9537419]
  43. Clin Endocrinol (Oxf). 1998 Mar;48(3):251-5 [PMID: 9578811]
  44. Mol Cell Biol. 1998 Jul;18(7):4032-42 [PMID: 9632788]
  45. Genes Dev. 1998 Aug 1;12(15):2245-62 [PMID: 9694791]
  46. Mol Cell. 1998 Sep;2(3):293-304 [PMID: 9774968]
  47. Curr Biol. 1999 May 6;9(9):449-59 [PMID: 10322110]
  48. Nature. 2000 Oct 5;407(6804):592-8 [PMID: 11034201]

Grants

  1. P01 CA089021/NCI NIH HHS
  2. R01 CA065842/NCI NIH HHS
  3. P01CA89021/NCI NIH HHS
  4. R01CA65842/NCI NIH HHS

MeSH Term

Alleles
Animals
Bromodeoxyuridine
Cell Cycle
Cell Differentiation
Cell Proliferation
Cells, Cultured
Coloring Agents
Crosses, Genetic
Gene Expression Regulation, Developmental
Gene Expression Regulation, Neoplastic
Genes, ras
Genotype
Heterozygote
Immunohistochemistry
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Muscle, Skeletal
Mutation
MyoD Protein
Neoplasms
Pituitary Gland
Polymerase Chain Reaction
Protein Binding
Retinoblastoma Protein
Ribonucleases
Time Factors
Transcriptional Activation
Transgenes

Chemicals

Coloring Agents
MyoD Protein
Retinoblastoma Protein
Ribonucleases
Bromodeoxyuridine

Word Cloud

Created with Highcharts 10.0.0differentiationtumorRbK-raspRbvivosuppressioncontroldevelopmentalfunctionAlthoughretinoblastomaproteinimplicatedprocessescellularcompellinggeneticevidenceactivitiescontributepRb-mediatedMotivatedcellculturestudiessuggestingRasdownstreameffectorexaminedphenotypesdouble-knockoutmicefindheterozygosityrescueduniquesubsetdefectscharacterizeRb-deficientembryosaffectingproliferationiisignificantlyenhanceddegreepituitaryadenocarcinomasarisingheterozygotesleadingprolongedsurvivalobservationssuggesttogethercontextsembryonicdevelopmentabilityaffectmajorfacetsuppressorGeneticinteraction

Similar Articles

Cited By