Identification of ON-OFF direction-selective ganglion cells in the mouse retina.

Shijun Weng, Wenzhi Sun, Shigang He
Author Information
  1. Shijun Weng: Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.

Abstract

We identified the ON-OFF direction-selective ganglion cells (DSGCs) in the mouse retina and characterized their physiological, morphological and pharmacological properties. These cells showed transient responses to the onset and termination of a stationary flashing spot, and strong directional selectivity to a moving rectangle. Application of various pharmacological reagents demonstrated that the ON-OFF DSGCs in the mouse retina utilize a similar array of transmitters and receptors to compute motion direction to their counterparts in the rabbit retina. Voltage clamp recording showed that ON-OFF DSGCs in the mouse retina receive a larger inhibitory input when the stimulus is moving in the null direction and a larger excitatory input when the stimulus is moving in the preferred direction. Finally, intracellular infusion of neurobiotin revealed a bistratified dendritic field with recursive dendrites forming loop-like structures, previously classified as RG(D2) by morphology. Overall, the ON-OFF DSGCs in the mouse retina exhibit almost identical properties to their counterparts in the rabbit retina, indicating that the mechanisms for computing motion direction are conserved from mouse to rabbit, and probably also to higher mammals. This first detailed characterization of ON-OFF DSGCs in the mouse retina provides fundamental information for further study of maturation and regulation of the neuronal circuitry underlying computation of direction.

References

  1. Science. 1976 Jan 16;191(4223):204-5 [PMID: 1857]
  2. J Neurophysiol. 1975 May;38(3):613-26 [PMID: 1127460]
  3. J Physiol. 1978 Mar;276:277-98 [PMID: 650450]
  4. J Physiol. 1982 Mar;324:161-85 [PMID: 7097594]
  5. J Comp Neurol. 2000 Feb 28;418(1):33-40 [PMID: 10701754]
  6. J Comp Neurol. 2000 May 22;421(1):1-13 [PMID: 10813769]
  7. J Neurosci. 2000 Sep 1;20(17):6570-7 [PMID: 10964962]
  8. Science. 2000 Sep 29;289(5488):2347-50 [PMID: 11009420]
  9. J Neurosci. 2000 Oct 15;20(20):7672-81 [PMID: 11027228]
  10. Prog Brain Res. 2001;131:599-613 [PMID: 11420974]
  11. Neuron. 2001 Jun;30(3):771-80 [PMID: 11430810]
  12. Brain Res. 1984 Apr 23;298(1):187-90 [PMID: 6722555]
  13. J Comp Neurol. 1989 Feb 1;280(1):97-121 [PMID: 2918098]
  14. J Neurosci. 1991 Jan;11(1):111-22 [PMID: 1670781]
  15. J Neurosci. 1991 Jan;11(1):123-33 [PMID: 1824711]
  16. Science. 1991 May 17;252(5008):939-43 [PMID: 2035024]
  17. Neurosci Lett. 1991 Apr 29;125(2):187-90 [PMID: 1715532]
  18. J Neurosci. 1993 Sep;13(9):4091-100 [PMID: 8366362]
  19. J Neurosci. 1994 Nov;14(11 Pt 1):6301-16 [PMID: 7965037]
  20. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1127-31 [PMID: 7862647]
  21. J Neurophysiol. 1997 Feb;77(2):675-89 [PMID: 9065840]
  22. Annu Rev Neurosci. 1999;22:29-47 [PMID: 10202531]
  23. Science. 1963 Feb 1;139(3553):412-4 [PMID: 13966712]
  24. Nature. 1997 Sep 25;389(6649):378-82 [PMID: 9311778]
  25. Curr Opin Neurobiol. 2002 Aug;12(4):405-10 [PMID: 12139988]
  26. Nature. 2002 Aug 22;418(6900):845-52 [PMID: 12192402]
  27. J Neurosci. 2002 Sep 1;22(17):7712-20 [PMID: 12196594]
  28. J Comp Neurol. 2002 Sep 16;451(2):115-26 [PMID: 12209831]
  29. Nature. 2002 Nov 28;420(6914):411-4 [PMID: 12459782]
  30. J Comp Neurol. 2003 Feb 3;456(2):154-66 [PMID: 12509872]
  31. Vis Neurosci. 2002 Jul-Aug;19(4):495-509 [PMID: 12511082]
  32. Trends Neurosci. 2003 Jul;26(7):379-85 [PMID: 12850434]
  33. Science. 2003 Oct 17;302(5644):408-11 [PMID: 14563998]
  34. J Physiol. 2004 Apr 1;556(Pt 1):11-7 [PMID: 14978206]
  35. J Neurobiol. 2004 Nov;61(2):236-49 [PMID: 15389605]
  36. J Physiol. 1965 Jun;178(3):477-504 [PMID: 5827909]
  37. J Physiol. 1974 Jul;240(2):457-92 [PMID: 4420300]
  38. J Neurophysiol. 1976 Nov;39(6):1220-35 [PMID: 993829]

MeSH Term

Action Potentials
Animals
Biotin
Dendrites
Mice
Mice, Inbred C57BL
Motion Perception
Photic Stimulation
Retinal Ganglion Cells
Synaptic Transmission

Chemicals

neurobiotin
Biotin

Word Cloud

Created with Highcharts 10.0.0retinamouseON-OFFDSGCsdirectioncellsmovingrabbitdirection-selectiveganglionpharmacologicalpropertiesshowedmotioncounterpartslargerinputstimulusidentifiedcharacterizedphysiologicalmorphologicaltransientresponsesonsetterminationstationaryflashingspotstrongdirectionalselectivityrectangleApplicationvariousreagentsdemonstratedutilizesimilararraytransmittersreceptorscomputeVoltageclamprecordingreceiveinhibitorynullexcitatorypreferredFinallyintracellularinfusionneurobiotinrevealedbistratifieddendriticfieldrecursivedendritesformingloop-likestructurespreviouslyclassifiedRGD2morphologyOverallexhibitalmostidenticalindicatingmechanismscomputingconservedprobablyalsohighermammalsfirstdetailedcharacterizationprovidesfundamentalinformationstudymaturationregulationneuronalcircuitryunderlyingcomputationIdentification

Similar Articles

Cited By