Coupling between phosphate release and force generation in muscle actomyosin.

Y Takagi, H Shuman, Y E Goldman
Author Information
  1. Y Takagi: Pennsylvania Muscle Institute, University of Pennsylvania, D700 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6083, USA.

Abstract

Energetic, kinetic and oxygen exchange experiments in the mid-1980s and early 1990s suggested that phosphate (Pi) release from actomyosin-adenosine diphosphate Pi (AM.ADP.Pi) in muscle fibres is linked to force generation and that Pi release is reversible. The transition leading to the force-generating state and subsequent Pi release were hypothesized to be separate, but closely linked steps. Pi shortens single force-generating actomyosin interactions in an isometric optical clamp only if the conditions enable them to last 20-40 ms, enough time for Pi to dissociate. Until 2003, the available crystal forms of myosin suggested a rigid coupling between movement of switch II and tilting of the lever arm to generate force, but they did not explain the reciprocal affinity myosin has for actin and nucleotides. Newer crystal forms and other structural data suggest that closing of the actin-binding cleft opens switch I (presumably decreasing nucleotide affinity). These data are all consistent with the order of events suggested before: myosin.ADP.Pi binds weakly, then strongly to actin, generating force. Then Pi dissociates, possibly further increasing force or sliding.

References

  1. Curr Biol. 1999 Oct 21;9(20):R773-5 [PMID: 10531021]
  2. J Physiol. 1984 Sep;354:605-24 [PMID: 6481646]
  3. J Biol Chem. 1985 Mar 25;260(6):3496-500 [PMID: 3156135]
  4. Proc Natl Acad Sci U S A. 1985 Feb;82(3):658-62 [PMID: 3871943]
  5. Science. 1985 Jun 14;228(4705):1317-9 [PMID: 3159090]
  6. J Gen Physiol. 1985 Sep;86(3):305-27 [PMID: 3903036]
  7. Annu Rev Physiol. 1987;49:629-36 [PMID: 2952052]
  8. J Biol Chem. 1989 May 5;264(13):7193-201 [PMID: 2523391]
  9. Pflugers Arch. 1989 May;414(1):73-81 [PMID: 2726438]
  10. J Biol Chem. 1990 Jan 5;265(1):171-6 [PMID: 2136736]
  11. Biophys J. 1991 Feb;59(2):329-42 [PMID: 2009356]
  12. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7323-7 [PMID: 1871140]
  13. J Biol Chem. 1992 Feb 5;267(4):2459-66 [PMID: 1733945]
  14. Nature. 1992 May 14;357(6374):156-8 [PMID: 1579164]
  15. J Physiol. 1992;451:247-78 [PMID: 1403812]
  16. Science. 1993 Jul 2;261(5117):50-8 [PMID: 8316857]
  17. Science. 1993 Jul 2;261(5117):58-65 [PMID: 8316858]
  18. Nature. 1993 Jul 8;364(6433):171-4 [PMID: 8321290]
  19. Biophys J. 1993 Aug;65(2):638-51 [PMID: 8218893]
  20. Nature. 1994 Mar 10;368(6467):113-9 [PMID: 8139653]
  21. J Physiol. 1994 Jan 15;474(2):283-90 [PMID: 8006815]
  22. Biophys J. 1994 Dec;67(6):2436-47 [PMID: 7696482]
  23. FEBS Lett. 1995 May 1;364(1):59-62 [PMID: 7750544]
  24. Jpn J Physiol. 1994;44(6):675-91 [PMID: 7760522]
  25. Biophys J. 1995 Apr;68(4 Suppl):92S-96S; discussion 96S-98S [PMID: 7787115]
  26. Nature. 1995 Jun 22;375(6533):688-91 [PMID: 7791902]
  27. Biochemistry. 1995 Jul 18;34(28):8960-72 [PMID: 7619795]
  28. Biophys J. 1995 Jul;69(1):177-88 [PMID: 7669895]
  29. Nature. 1995 Nov 9;378(6553):209-12 [PMID: 7477328]
  30. Biochemistry. 1996 Apr 30;35(17):5404-17 [PMID: 8611530]
  31. Annu Rev Physiol. 1996;58:671-702 [PMID: 8815815]
  32. J Cell Biol. 1996 Oct;135(2):291-302 [PMID: 8896589]
  33. Curr Biol. 1997 Feb 1;7(2):R112-8 [PMID: 9081660]
  34. Biophys J. 1997 Mar;72(3):1006-21 [PMID: 9138552]
  35. Physiol Rev. 1997 Jul;77(3):671-97 [PMID: 9234962]
  36. Biochemistry. 1998 Feb 17;37(7):1969-78 [PMID: 9485324]
  37. Cell. 1998 Sep 4;94(5):559-71 [PMID: 9741621]
  38. Cell. 1999 May 14;97(4):459-70 [PMID: 10338210]
  39. Biophys J. 1999 Jul;77(1):354-72 [PMID: 10388763]
  40. Proc Biol Sci. 1999 Jul 7;266(1426):1381-5 [PMID: 10445293]
  41. Cell. 1999 Nov 12;99(4):421-31 [PMID: 10571184]
  42. Cell. 1998 Apr 3;93(1):1-4 [PMID: 9546383]
  43. Biophys J. 2000 Jun;78(6):3081-92 [PMID: 10827985]
  44. Annu Rev Biochem. 1999;68:687-728 [PMID: 10872464]
  45. Curr Opin Struct Biol. 2001 Apr;11(2):182-94 [PMID: 11297926]
  46. Nat Rev Mol Cell Biol. 2001 May;2(5):387-92 [PMID: 11331913]
  47. J Physiol. 2002 May 15;541(Pt 1):187-99 [PMID: 12015429]
  48. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6434-9 [PMID: 12750465]
  49. Nature. 2003 Sep 25;425(6956):419-23 [PMID: 14508494]
  50. Nature. 2003 Sep 25;425(6956):423-7 [PMID: 14508495]
  51. Nat Struct Biol. 2003 Oct;10(10):831-5 [PMID: 14502269]
  52. Nat Struct Biol. 2003 Oct;10(10):826-30 [PMID: 14502270]
  53. Biophys J. 2004 Jul;87(1):442-56 [PMID: 15240478]
  54. Biochemistry. 1971 Dec 7;10(25):4617-24 [PMID: 4258719]
  55. Biochem J. 1972 Feb;126(3):635-44 [PMID: 4263038]
  56. J Physiol. 1974 Nov;243(1):1-43 [PMID: 4449057]
  57. Pflugers Arch. 1976 Jun 22;363(3):219-22 [PMID: 986608]
  58. Biochemistry. 1976 Dec 28;15(26):5818-26 [PMID: 12793]
  59. Biochemistry. 1980 Apr 1;19(7):1276-83 [PMID: 6892994]
  60. Nature. 1982 Dec 23;300(5894):701-5 [PMID: 7177194]
  61. J Physiol. 1984 Sep;354:577-604 [PMID: 6481645]

Grants

  1. AR26846/NIAMS NIH HHS
  2. AR45990/NIAMS NIH HHS
  3. HL15835/NHLBI NIH HHS

MeSH Term

Actins
Animals
Models, Biological
Muscle Contraction
Muscle, Skeletal
Myofibrils
Myosins
Phosphates

Chemicals

Actins
Phosphates
Myosins

Word Cloud

Created with Highcharts 10.0.0PiforcereleasesuggestedmyosinphosphateADPmusclelinkedgenerationforce-generatingactomyosincrystalformsswitchaffinityactindataEnergetickineticoxygenexchangeexperimentsmid-1980searly1990sactomyosin-adenosinediphosphateAMfibresreversibletransitionleadingstatesubsequenthypothesizedseparatecloselystepsshortenssingleinteractionsisometricopticalclampconditionsenablelast20-40msenoughtimedissociate2003availablerigidcouplingmovementIItiltingleverarmgenerateexplainreciprocalnucleotidesNewerstructuralsuggestclosingactin-bindingcleftopenspresumablydecreasingnucleotideconsistentordereventsbefore:bindsweaklystronglygeneratingdissociatespossiblyincreasingslidingCoupling

Similar Articles

Cited By