Real-time control of neutrophil metabolism by very weak ultra-low frequency pulsed magnetic fields.

Allen J Rosenspire, Andrei L Kindzelskii, Bruce J Simon, Howard R Petty
Author Information
  1. Allen J Rosenspire: Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA. arosensp@sun.science.wayne.edu

Abstract

In adherent and motile neutrophils NAD(P)H concentration, flavoprotein redox potential, and production of reactive oxygen species and nitric oxide, are all periodic and exhibit defined phase relationships to an underlying metabolic oscillation of approximately 20 s. Utilizing fluorescence microscopy, we have shown in real-time, on the single cell level, that the system is sensitive to externally applied periodically pulsed weak magnetic fields matched in frequency to the metabolic oscillation. Depending upon the phase relationship of the magnetic pulses to the metabolic oscillation, the magnetic pulses serve to either increase the amplitude of the NAD(P)H and flavoprotein oscillations, and the rate of production of reactive oxygen species and nitric oxide or, alternatively, collapse the metabolic oscillations and curtail production of reactive oxygen species and nitric oxide. Significantly, we demonstrate that the cells do not directly respond to the magnetic fields, but instead are sensitive to the electric fields which the pulsed magnetic fields induce. These weak electric fields likely tap into an endogenous signaling pathway involving calcium channels in the plasma membrane. We estimate that the threshold which induced electric fields must attain to influence cell metabolism is of the order of 10(-4) V/m.

References

  1. Biophys J. 1997 Dec;73(6):3056-65 [PMID: 9414219]
  2. Orthop Clin North Am. 1984 Jan;15(1):61-87 [PMID: 6607442]
  3. FASEB J. 1998 Apr;12(6):395-420 [PMID: 9535213]
  4. J Bone Joint Surg Am. 1981 Jun;63(5):847-51 [PMID: 6972380]
  5. J Cell Physiol. 2002 Oct;193(1):1-9 [PMID: 12209874]
  6. Front Biosci. 2002 Jan 1;7:a1-8 [PMID: 11779692]
  7. Eur Biophys J. 2004 Jul;33(4):291-9 [PMID: 14574524]
  8. J Immunol. 1999 Oct 15;163(8):4367-74 [PMID: 10510377]
  9. J Orthop Res. 2003 Mar;21(2):326-34 [PMID: 12568966]
  10. Biophys J. 2000 Dec;79(6):3001-8 [PMID: 11106607]
  11. FASEB J. 1999 Apr;13(6):677-83 [PMID: 10094928]
  12. Clin Orthop Relat Res. 2004 Feb;(419):30-7 [PMID: 15021128]
  13. J Orthop Trauma. 2000 Feb;14(2):93-100 [PMID: 10716379]
  14. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3740-3 [PMID: 7731976]
  15. Spine (Phila Pa 1976). 2001 May 1;26(9):1002-8 [PMID: 11337616]
  16. Clin Orthop Relat Res. 2004 Feb;(419):21-9 [PMID: 15021127]
  17. Mutat Res. 2004 Jan 10;557(1):63-74 [PMID: 14706519]
  18. J Theor Biol. 1990 Aug 9;145(3):385-96 [PMID: 2232823]
  19. Clin Orthop Relat Res. 1968 May-Jun;58:249-70 [PMID: 4875293]
  20. J Orthop Res. 1987;5(2):253-60 [PMID: 3471934]
  21. J Cell Sci. 1999 Jun;112 ( Pt 12):1967-78 [PMID: 10341215]
  22. Chem Pharm Bull (Tokyo). 1998 Feb;46(2):373-5 [PMID: 9501473]
  23. Cell Biol Int. 2001;25(9):901-7 [PMID: 11518497]
  24. Bioelectromagnetics. 1999;Suppl 4:102-9 [PMID: 10334719]
  25. Int J Immunopathol Pharmacol. 2002 May-Aug;15(2):95-105 [PMID: 12590871]
  26. FEBS Lett. 1997 Sep 8;414(2):343-8 [PMID: 9315715]
  27. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10104-8 [PMID: 10468569]
  28. J Invest Dermatol. 1998 Nov;111(5):751-6 [PMID: 9804333]
  29. J Cell Sci. 2001 Apr;114(Pt 8):1515-20 [PMID: 11282027]
  30. J Immunol. 2002 Nov 15;169(10):5396-400 [PMID: 12421912]
  31. Science. 1962 Sep 28;137(3535):1063-4 [PMID: 13865637]
  32. FASEB J. 2004 Aug;18(11):1231-3 [PMID: 15208265]
  33. J Bone Joint Surg Am. 1985 Apr;67(4):577-85 [PMID: 3872300]
  34. Biochem Biophys Res Commun. 1999 Nov 2;264(3):657-61 [PMID: 10543988]
  35. Clin Orthop Relat Res. 1998 May;(350):246-56 [PMID: 9602826]
  36. Biochim Biophys Acta. 2000 Jan 10;1495(1):90-111 [PMID: 10634935]
  37. J Cell Physiol. 1993 Aug;156(2):395-8 [PMID: 8344993]
  38. Bioelectromagnetics. 1992;Suppl 1:147-57 [PMID: 1285710]
  39. Phys Med Biol. 2002 Nov 7;47(21):3831-9 [PMID: 12452574]
  40. Clin Orthop Relat Res. 2001 Mar;(384):265-79 [PMID: 11249175]
  41. Spine J. 2001 Sep-Oct;1(5):341-7 [PMID: 14588312]
  42. Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S90-104 [PMID: 9917630]
  43. J Bone Joint Surg Am. 1974 Jul;56(5):1023-30 [PMID: 4847224]
  44. Biophys J. 1998 Nov;75(5):2251-4 [PMID: 9788920]
  45. J Cell Physiol. 1992 Jan;150(1):84-9 [PMID: 1730789]
  46. J Bone Joint Surg Am. 1987 Apr;69(4):626-30 [PMID: 3553199]
  47. J Orthop Res. 2002 Sep;20(5):1106-14 [PMID: 12382979]
  48. Acta Physiol Pharmacol Bulg. 2003;27(2-3):89-100 [PMID: 14570154]
  49. J Cell Physiol. 1986 Dec;129(3):283-8 [PMID: 3782308]

Grants

  1. R01 CA074120/NCI NIH HHS
  2. R21 AT002182/NCCIH NIH HHS
  3. AT002182/NCCIH NIH HHS
  4. CA74120/NCI NIH HHS

MeSH Term

Biophysics
Calcium
Cell Membrane
Cell Size
Electromagnetic Fields
Humans
Magnetics
Microscopy, Fluorescence
NADP
Neutrophils
Nitric Oxide
Oscillometry
Oxidation-Reduction
Reactive Oxygen Species
Signal Transduction
Time Factors

Chemicals

Reactive Oxygen Species
Nitric Oxide
NADP
Calcium

Word Cloud

Created with Highcharts 10.0.0fieldsmagneticmetabolicproductionreactiveoxygenspeciesnitricoxideoscillationpulsedweakelectricNADPHflavoproteinphasecellsensitivefrequencypulsesoscillationsmetabolismadherentmotileneutrophilsconcentrationredoxpotentialperiodicexhibitdefinedrelationshipsunderlyingapproximately20sUtilizingfluorescencemicroscopyshownreal-timesinglelevelsystemexternallyappliedperiodicallymatchedDependinguponrelationshipserveeitherincreaseamplituderatealternativelycollapsecurtailSignificantlydemonstratecellsdirectlyrespondinsteadinducelikelytapendogenoussignalingpathwayinvolvingcalciumchannelsplasmamembraneestimatethresholdinducedmustattaininfluenceorder10-4V/mReal-timecontrolneutrophilultra-low

Similar Articles

Cited By