Association of ebola virus matrix protein VP40 with microtubules.

Gordon Ruthel, Gretchen L Demmin, George Kallstrom, Melodi P Javid, Shirin S Badie, Amy B Will, Timothy Nelle, Rowena Schokman, Tam L Nguyen, John H Carra, Sina Bavari, M Javad Aman
Author Information
  1. Gordon Ruthel: USAMRIID, 1425 Porter St., Frederick, MD 21702, USA.

Abstract

Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus.

References

  1. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7137-41 [PMID: 6296818]
  2. J Biol Chem. 2004 Jul 2;279(27):28522-30 [PMID: 15117959]
  3. J Gen Virol. 2000 Jan;81(Pt 1):47-58 [PMID: 10640541]
  4. J Virol. 2000 Apr;74(7):3313-20 [PMID: 10708448]
  5. Acta Crystallogr D Biol Crystallogr. 2000 Jun;56(Pt 6):758-60 [PMID: 10818356]
  6. J Mol Biol. 2000 Jun 30;300(1):103-12 [PMID: 10864502]
  7. Trends Microbiol. 2000 Oct;8(10):465-72 [PMID: 11044681]
  8. J Virol. 2004 Aug;78(15):7990-8001 [PMID: 15254171]
  9. J Virol. 1975 Sep;16(3):696-706 [PMID: 1159898]
  10. Virology. 1977 Sep;81(2):371-81 [PMID: 197697]
  11. J Virol. 1979 Jan;29(1):134-42 [PMID: 219213]
  12. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5405-9 [PMID: 3016702]
  13. Science. 1988 Nov 11;242(4880):936-9 [PMID: 3142041]
  14. J Gen Virol. 1990 Apr;71 ( Pt 4):775-83 [PMID: 2324707]
  15. J Gen Virol. 1990 Sep;71 ( Pt 9):1985-91 [PMID: 2212989]
  16. EMBO J. 1992 Nov;11(11):3953-61 [PMID: 1396588]
  17. Biol Cell. 1993;78(3):229-34 [PMID: 8241964]
  18. J Virol. 1994 Mar;68(3):1532-43 [PMID: 8107216]
  19. Virology. 1994 Jul;202(1):339-47 [PMID: 8009846]
  20. J Cell Sci. 1994 Nov;107 ( Pt 11):3115-25 [PMID: 7699010]
  21. J Biochem. 1995 Mar;117(3):527-34 [PMID: 7629018]
  22. J Virol. 1996 Jan;70(1):241-7 [PMID: 8523532]
  23. Arch Virol. 1996;141(3-4):671-83 [PMID: 8645103]
  24. J Cell Sci. 1996 Jan;109 ( Pt 1):91-9 [PMID: 8834794]
  25. J Virol. 1998 Aug;72(8):6448-55 [PMID: 9658087]
  26. J Virol. 1998 Aug;72(8):6898-901 [PMID: 9658142]
  27. Microbiol Mol Biol Rev. 1998 Dec;62(4):1171-90 [PMID: 9841669]
  28. Curr Top Microbiol Immunol. 1999;235:1-21 [PMID: 9893375]
  29. J Cell Biol. 1999 Feb 22;144(4):657-72 [PMID: 10037788]
  30. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13871-6 [PMID: 11095724]
  31. EMBO J. 2000 Dec 15;19(24):6732-41 [PMID: 11118208]
  32. J Virol. 2001 Feb;75(3):1117-23 [PMID: 11152484]
  33. Curr Opin Cell Biol. 2001 Feb;13(1):97-105 [PMID: 11163140]
  34. Virology. 2001 Apr 25;283(1):1-6 [PMID: 11312656]
  35. J Virol. 2001 Jun;75(11):5205-14 [PMID: 11333902]
  36. J Virol. 2001 Oct;75(20):9819-27 [PMID: 11559815]
  37. Virology. 2001 Oct 10;289(1):95-102 [PMID: 11601921]
  38. Nat Cell Biol. 2001 Nov;3(11):992-1000 [PMID: 11715020]
  39. Nat Cell Biol. 2001 Nov;3(11):E245-6 [PMID: 11715030]
  40. Nat Med. 2001 Dec;7(12):1313-9 [PMID: 11726971]
  41. J Virol. 2002 Feb;76(4):1825-38 [PMID: 11799178]
  42. J Exp Med. 2002 Mar 4;195(5):593-602 [PMID: 11877482]
  43. Virology. 2002 Jan 20;292(2):235-40 [PMID: 11878926]
  44. J Virol. 2002 May;76(9):4483-96 [PMID: 11932414]
  45. Science. 2002 Apr 19;296(5567):503-7 [PMID: 11964472]
  46. J Virol. 2002 May;76(10):4961-70 [PMID: 11967313]
  47. J Virol. 2002 Aug;76(16):8285-97 [PMID: 12134034]
  48. J Virol. 2003 Feb;77(3):1812-9 [PMID: 12525615]
  49. Structure. 2003 Apr;11(4):423-33 [PMID: 12679020]
  50. Cell Biol Int. 2003;27(3):271-2 [PMID: 12681332]
  51. Microbes Infect. 2003 Jun;5(7):639-49 [PMID: 12787740]
  52. J Cell Sci. 2003 Aug 15;116(Pt 16):3433-42 [PMID: 12857789]
  53. J Gen Virol. 2003 Oct;84(Pt 10):2795-805 [PMID: 13679614]
  54. Biochem Biophys Res Commun. 2003 Nov 14;311(2):283-93 [PMID: 14592411]
  55. J Virol. 2003 Dec;77(24):13275-87 [PMID: 14645584]
  56. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15936-41 [PMID: 14673115]
  57. J Virol. 2004 Mar;78(5):2486-93 [PMID: 14963148]
  58. J Theor Biol. 1982 Nov 7;99(1):173-91 [PMID: 6302402]

Grants

  1. P41-04050/PHS HHS

MeSH Term

Cell Line
Ebolavirus
Humans
Kinetics
Microtubules
Transfection
Tubulin
Viral Matrix Proteins

Chemicals

Tubulin
VP40 protein, virus
Viral Matrix Proteins

Word Cloud

Created with Highcharts 10.0.0microtubulesVP40tubulinproteinviruscellsmicrotubuletruncationpolymerizationvarietycellularlifeproteinsidentifieddirectlyviamicrotubule-associatedEbolamatrixaminoacidsdepolymerizationnocodazoledemonstratedvitroregionVirusesexploitcomponentscompletecyclesbecomeincreasinglyclearusehostcellvitalpartinfectionprocessmanyvirusesviralinteracteithermotorreportassociatestransfectedmammalianfractioncolocalizedbundlescoimmunoprecipitateddegreecolocalizationbundlingmarkedlyintensifiedCterminuslength317308fewerabolishedassociationfull-length317-amino-acidmutantstabilizedDirectphysicalinteractionpurifiedmoderatehomologybindingmotifMAP2Deletingresultedlossstabilizationdrug-inducedpresenceVP40-associatedcontinuouslytreatedsuggestedpromotesUsingassayenhanceswithoutmediatorsresultssuggestmayplayimportantrolecyclepotentiallyprovidenoveltargettherapeuticinterventionhighlypathogenicAssociationebola

Similar Articles

Cited By