Reduced proteolysis of secreted gelatin and Yps1-mediated alpha-factor leader processing in a Pichia pastoris kex2 disruptant.

Marc W T Werten, Frits A de Wolf
Author Information
  1. Marc W T Werten: Agrotechnology & Food Innovations B.V., Wageningen UR, Bornsesteeg 59, NL-6708 PD Wageningen, The Netherlands. marc.werten@wur.nl

Abstract

Heterologous proteins secreted by yeast and fungal expression hosts are occasionally degraded at basic amino acids. We cloned Pichia pastoris homologs of the Saccharomyces cerevisiae basic residue-specific endoproteases Kex2 and Yps1 to evaluate their involvement in the degradation of a secreted mammalian gelatin. Disruption of the P. pastoris KEX2 gene prevented proteolysis of the foreign protein at specific monoarginylic sites. The S. cerevisiae alpha-factor preproleader used to direct high-level gelatin secretion was correctly processed at its dibasic site in the absence of the prototypical proprotein convertase Kex2. Disruption of the YPS1 gene had no effect on gelatin degradation or processing of the alpha-factor propeptide. When both the KEX2 and YPS1 genes were disrupted, correct precursor maturation no longer occurred. The different substrate specificities of both proteases and their mutual redundancy for propeptide processing indicate that P. pastoris kex2 and yps1 single-gene disruptants can be used for the alpha-factor leader-directed secretion of heterologous proteins otherwise degraded at basic residues.

Associated Data

GENBANK | AY362700; AY362701

References

  1. J Biol Chem. 1988 Oct 25;263(30):15342-7 [PMID: 2902090]
  2. Biotechnol Bioeng. 2000 Oct 5;70(1):1-8 [PMID: 10940857]
  3. Bioinformatics. 1998;14(4):378-9 [PMID: 9632836]
  4. Gene. 1988 Aug 15;68(1):139-49 [PMID: 2851488]
  5. Nucleic Acids Res. 1988 Aug 25;16(16):8186 [PMID: 3047679]
  6. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157-62 [PMID: 6035483]
  7. J Biol Chem. 1998 Jan 2;273(1):584-91 [PMID: 9417119]
  8. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10384-9 [PMID: 9724712]
  9. Matrix Biol. 1995 Jul;14(7):593-5 [PMID: 8535610]
  10. Protein Eng. 2001 Jun;14(6):447-54 [PMID: 11477225]
  11. Yeast. 1999 Aug;15(11):1087-96 [PMID: 10455232]
  12. Mol Biol Cell. 1992 Dec;3(12):1353-71 [PMID: 1493334]
  13. Gene. 1994 Jan 28;138(1-2):171-4 [PMID: 8125298]
  14. Trends Biochem Sci. 2004 Feb;29(2):80-7 [PMID: 15102434]
  15. Adv Drug Deliv Rev. 2003 Nov 28;55(12):1547-67 [PMID: 14623401]
  16. J Biol Chem. 1998 Nov 27;273(48):31648-51 [PMID: 9822624]
  17. Methods Enzymol. 1990;185:408-21 [PMID: 2199790]
  18. EMBO J. 1994 May 15;13(10):2280-8 [PMID: 8194519]
  19. Biotechnol Appl Biochem. 2000 Aug;32 ( Pt 1):53-60 [PMID: 10918038]
  20. Nucleic Acids Res. 1994 Jul 11;22(13):2507-11 [PMID: 8041612]
  21. Yeast. 1990 Mar-Apr;6(2):127-37 [PMID: 2183521]
  22. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  23. Curr Biol. 1993 Aug 1;3(8):498-506 [PMID: 15335687]
  24. EMBO J. 1994 Dec 15;13(24):5910-21 [PMID: 7813430]
  25. EMBO J. 1985 Jan;4(1):173-7 [PMID: 3894003]
  26. Methods Enzymol. 1991;194:182-7 [PMID: 2005786]
  27. Mol Microbiol. 2001 Sep;41(6):1431-44 [PMID: 11580846]
  28. Protein Eng. 1997 Jan;10(1):1-6 [PMID: 9051728]
  29. Cell. 1984 Jul;37(3):1075-89 [PMID: 6430565]
  30. J Biol Chem. 1993 Jun 5;268(16):11968-75 [PMID: 8389368]
  31. J Bacteriol. 1999 Jul;181(13):3886-9 [PMID: 10383953]
  32. Adv Exp Med Biol. 1995;362:569-72 [PMID: 8540374]
  33. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10752-6 [PMID: 7479877]
  34. J Biol Chem. 1995 Sep 1;270(35):20847-54 [PMID: 7657670]
  35. Appl Microbiol Biotechnol. 1998 Aug;50(2):187-92 [PMID: 9763689]
  36. Biochimie. 1994;76(3-4):226-33 [PMID: 7819327]
  37. Curr Opin Biotechnol. 2002 Aug;13(4):329-32 [PMID: 12323354]
  38. Biochem J. 1999 Apr 15;339 ( Pt 2):407-11 [PMID: 10191273]
  39. FEBS Lett. 1992 Mar 16;299(3):283-6 [PMID: 1544507]
  40. Biochemistry. 1998 Mar 10;37(10):3386-91 [PMID: 9521659]
  41. Chem Rev. 2002 Dec;102(12):4525-48 [PMID: 12475200]
  42. Nucleic Acids Res. 2002 Jan 1;30(1):276-80 [PMID: 11752314]
  43. Cell. 1983 Mar;32(3):839-52 [PMID: 6339075]
  44. J Biol Chem. 1996 Feb 23;271(8):4168-76 [PMID: 8626758]
  45. Arch Biochem Biophys. 1961 Nov;95:271-8 [PMID: 13890599]
  46. Yeast. 1994 Jan;10(1):67-79 [PMID: 8203153]
  47. J Mol Biol. 2004 Mar 19;337(2):243-53 [PMID: 15003443]
  48. Biochemistry. 1998 Mar 3;37(9):2768-77 [PMID: 9485427]

MeSH Term

Aspartic Acid Endopeptidases
Base Sequence
Cloning, Molecular
Fungal Proteins
Gelatin
Mating Factor
Molecular Sequence Data
Peptides
Pichia
Proprotein Convertases
Saccharomyces cerevisiae Proteins

Chemicals

Fungal Proteins
Peptides
Saccharomyces cerevisiae Proteins
Mating Factor
Gelatin
Proprotein Convertases
KEX2 protein, S cerevisiae
aspartic proteinase A
Aspartic Acid Endopeptidases

Word Cloud

Created with Highcharts 10.0.0pastorisgelatinalpha-factorsecretedbasicprocessingproteinsdegradedPichiacerevisiaeKex2degradationDisruptionPKEX2geneproteolysisusedsecretionYPS1propeptidekex2HeterologousyeastfungalexpressionhostsoccasionallyaminoacidsclonedhomologsSaccharomycesresidue-specificendoproteasesYps1evaluateinvolvementmammalianpreventedforeignproteinspecificmonoarginylicsitesSpreproleaderdirecthigh-levelcorrectlyprocesseddibasicsiteabsenceprototypicalproproteinconvertaseeffectgenesdisruptedcorrectprecursormaturationlongeroccurreddifferentsubstratespecificitiesproteasesmutualredundancyindicateyps1single-genedisruptantscanleader-directedheterologousotherwiseresiduesReducedYps1-mediatedleaderdisruptant

Similar Articles

Cited By