Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli.

G Balázsi, A-L Barabási, Z N Oltvai
Author Information
  1. G Balázsi: Department of Pathology, Northwestern University, Chicago, IL 60611, USA.

Abstract

Recent evidence indicates that potential interactions within metabolic, protein-protein interaction, and transcriptional regulatory networks are used differentially according to the environmental conditions in which a cell exists. However, the topological units underlying such differential utilization are not understood. Here we use the transcriptional regulatory network of Escherichia coli to identify such units, called origons, representing regulatory subnetworks that originate at a distinct class of sensor transcription factors. Using microarray data, we find that specific environmental signals affect mRNA expression levels significantly only within the origons responsible for their detection and processing. We also show that small regulatory interaction patterns, called subgraphs and motifs, occupy distinct positions in and between origons, offering insights into their dynamical role in information processing. The identified features are likely to represent a general framework for environmental signal processing in prokaryotes.

References

  1. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17940-5 [PMID: 15598746]
  2. Nat Genet. 2002 May;31(1):60-3 [PMID: 11967534]
  3. Nat Genet. 2002 May;31(1):64-8 [PMID: 11967538]
  4. Mol Microbiol. 2002 Jul;45(2):289-306 [PMID: 12123445]
  5. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7702-7 [PMID: 12805558]
  6. FEMS Microbiol Rev. 1998 Dec;22(5):341-52 [PMID: 9990723]
  7. Cell. 2004 Jun 11;117(6):713-20 [PMID: 15186773]
  8. Nat Genet. 2003 Jul;34(3):264-6 [PMID: 12819781]
  9. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15522-7 [PMID: 14673099]
  10. Genome Res. 2004 Jan;14(1):99-108 [PMID: 14672978]
  11. Bioessays. 2002 Dec;24(12):1118-29 [PMID: 12447977]
  12. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5136-41 [PMID: 12702751]
  13. Nature. 2004 Sep 16;431(7006):308-12 [PMID: 15372033]
  14. Nat Genet. 2001 Aug;28(4):327-34 [PMID: 11455386]
  15. J Mol Biol. 2003 Nov 21;334(2):197-204 [PMID: 14607112]
  16. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1364-9 [PMID: 11171956]
  17. BMC Bioinformatics. 2004 Dec 16;5:199 [PMID: 15603590]
  18. Cell. 2003 May 2;113(3):395-404 [PMID: 12732146]
  19. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D303-6 [PMID: 14681419]
  20. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):11980-5 [PMID: 14530388]
  21. Science. 2000 Dec 22;290(5500):2306-9 [PMID: 11125145]
  22. Nat Genet. 2004 Dec;36(12):1331-9 [PMID: 15543148]
  23. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6 [PMID: 10963673]
  24. J Bacteriol. 2003 Nov;185(21):6392-9 [PMID: 14563874]
  25. Biophys J. 2004 Mar;86(3):1282-92 [PMID: 14990461]
  26. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8409-14 [PMID: 10890920]
  27. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6163-8 [PMID: 11983907]
  28. Bioessays. 1998 May;20(5):433-40 [PMID: 9670816]
  29. J Theor Biol. 2004 Aug 7;229(3):383-94 [PMID: 15234205]
  30. Curr Opin Microbiol. 2003 Oct;6(5):482-9 [PMID: 14572541]
  31. Science. 2002 Oct 25;298(5594):824-7 [PMID: 12399590]
  32. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3192-7 [PMID: 15728374]
  33. BMC Bioinformatics. 2004 Jan 30;5:10 [PMID: 15018656]
  34. Nature. 2004 Sep 2;431(7004):99-104 [PMID: 15343339]
  35. J Biol Chem. 2004 Mar 5;279(10):9278-86 [PMID: 14645253]

MeSH Term

Computer Simulation
Databases, Genetic
Escherichia coli
Gene Expression Regulation, Bacterial
Genes, Regulator
Kinetics
Microarray Analysis
Models, Theoretical
RNA, Messenger
Signal Transduction
Transcription Factors

Chemicals

RNA, Messenger
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0regulatoryenvironmentalprocessingtranscriptionalunitsorigonswithininteractionnetworkEscherichiacolicalleddistinctsignalRecentevidenceindicatespotentialinteractionsmetabolicprotein-proteinnetworksuseddifferentiallyaccordingconditionscellexistsHowevertopologicalunderlyingdifferentialutilizationunderstooduseidentifyrepresentingsubnetworksoriginateclasssensortranscriptionfactorsUsingmicroarraydatafindspecificsignalsaffectmRNAexpressionlevelssignificantlyresponsibledetectionalsoshowsmallpatternssubgraphsmotifsoccupypositionsofferinginsightsdynamicalroleinformationidentifiedfeatureslikelyrepresentgeneralframeworkprokaryotesTopological

Similar Articles

Cited By (91)