Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes.

Mythily Ganapathi, Pragya Srivastava, Sushanta Kumar Das Sutar, Kaushal Kumar, Dipayan Dasgupta, Gajinder Pal Singh, Vani Brahmachari, Samir K Brahmachari
Author Information
  1. Mythily Ganapathi: Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India. mythilyg@igib.res.in

Abstract

BACKGROUND: Global regulatory mechanisms involving chromatin assembly and remodelling in the promoter regions of genes is implicated in eukaryotic transcription control especially for genes subjected to spatial and temporal regulation. The potential to utilise global regulatory mechanisms for controlling gene expression might depend upon the architecture of the chromatin in and around the gene. In-silico analysis can yield important insights into this aspect, facilitating comparison of two or more classes of genes comprising of a large number of genes within each group.
RESULTS: In the present study, we carried out a comparative analysis of chromatin characteristics in terms of the scaffold/matrix attachment regions, nucleosome formation potential and the occurrence of repetitive sequences, in the upstream regulatory regions of housekeeping and tissue specific genes. Our data show that putative scaffold/matrix attachment regions are more abundant and nucleosome formation potential is higher in the 5' regions of tissue specific genes as compared to the housekeeping genes.
CONCLUSION: The differences in the chromatin features between the two groups of genes indicate the involvement of chromatin organisation in the control of gene expression. The presence of global regulatory mechanisms mediated through chromatin organisation can decrease the burden of invoking gene specific regulators for maintenance of the active/silenced state of gene expression. This could partially explain the lower number of genes estimated in the human genome.

References

  1. J Biol Chem. 1998 Jan 23;273(4):2473-9 [PMID: 9442099]
  2. Trends Genet. 2003 Jul;19(7):362-5 [PMID: 12850439]
  3. Genome Res. 2003 Sep;13(9):1998-2004 [PMID: 12915492]
  4. Trends Genet. 2003 Mar;19(3):119-24 [PMID: 12615002]
  5. Nat Genet. 2002 Jun;31(2):180-3 [PMID: 11992122]
  6. Science. 2003 Jun 6;300(5625):1484 [PMID: 12791949]
  7. Trends Genet. 2003 Feb;19(2):68-72 [PMID: 12547512]
  8. Biosystems. 1986;19(2):123-6 [PMID: 3730535]
  9. Cell. 2004 Jan 23;116(2):259-72 [PMID: 14744436]
  10. Curr Biol. 1994 Jun 1;4(6):525-8 [PMID: 7922373]
  11. Bioinformatics. 2004 Apr 12;20(6):813-7 [PMID: 14751968]
  12. EMBO J. 1995 Jun 1;14(11):2570-9 [PMID: 7781610]
  13. Science. 2003 Aug 8;301(5634):798-802 [PMID: 12907790]
  14. Bioinformatics. 2001 Nov;17(11):998-1010 [PMID: 11724728]
  15. J Biotechnol. 2004 Jan 22;107(2):95-105 [PMID: 14711493]
  16. Electrophoresis. 1995 Sep;16(9):1705-14 [PMID: 8582360]
  17. Brief Funct Genomic Proteomic. 2004 Feb;2(4):334-43 [PMID: 15163368]
  18. Nucleic Acids Res. 1994 Oct 11;22(20):4202-10 [PMID: 7937146]
  19. Nucleic Acids Res. 1997 Apr 1;25(7):1419-25 [PMID: 9060438]
  20. Genes Dev. 2000 Oct 15;14(20):2551-69 [PMID: 11040209]
  21. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8620-4 [PMID: 15169959]
  22. Mol Biol Evol. 2003 Sep;20(9):1420-4 [PMID: 12832639]
  23. J Biol Chem. 1999 Aug 20;274(34):23752-60 [PMID: 10446135]
  24. Chromosome Res. 2003;11(5):447-59 [PMID: 12971721]
  25. Biochim Biophys Acta. 2001 Feb 16;1517(3):351-64 [PMID: 11342213]
  26. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8863-7 [PMID: 8799118]
  27. Cell. 2004 Sep 3;118(5):555-66 [PMID: 15339661]
  28. J Virol. 1986 Nov;60(2):683-92 [PMID: 3490582]
  29. Brief Bioinform. 2000 Feb;1(1):33-44 [PMID: 11466972]
  30. Trends Genet. 2004 May;20(5):248-53 [PMID: 15109779]
  31. Crit Rev Eukaryot Gene Expr. 2000;10(1):73-90 [PMID: 10813396]
  32. Mol Cell. 2003 Jun;11(6):1587-98 [PMID: 12820971]
  33. Genomics. 2004 May;83(5):873-82 [PMID: 15081116]
  34. Mol Cell Biol. 1999 Nov;19(11):7661-71 [PMID: 10523654]
  35. J Cell Biol. 2003 Aug 18;162(4):565-74 [PMID: 12925706]
  36. Nucleic Acids Res. 2000 Nov 1;28(21):4083-9 [PMID: 11058103]

MeSH Term

Cell Nucleus
Chromatin
Chromatin Assembly and Disassembly
Computational Biology
Databases, Genetic
Enhancer Elements, Genetic
Gene Expression Regulation
Genome, Human
Humans
Models, Genetic
Nucleosomes
Regulatory Sequences, Nucleic Acid
Repetitive Sequences, Nucleic Acid
Software
Tissue Distribution
Transcription, Genetic

Chemicals

Chromatin
Nucleosomes

Word Cloud

Created with Highcharts 10.0.0geneschromatinregionsregulatorygenespecificmechanismspotentialexpressionanalysishousekeepingtissuecontrolglobalcantwonumberscaffold/matrixattachmentnucleosomeformationorganisationhumanBACKGROUND:GlobalinvolvingassemblyremodellingpromoterimplicatedeukaryotictranscriptionespeciallysubjectedspatialtemporalregulationutilisecontrollingmightdependuponarchitecturearoundIn-silicoyieldimportantinsightsaspectfacilitatingcomparisonclassescomprisinglargewithingroupRESULTS:presentstudycarriedcomparativecharacteristicstermsoccurrencerepetitivesequencesupstreamdatashowputativeabundanthigher5'comparedCONCLUSION:differencesfeaturesgroupsindicateinvolvementpresencemediateddecreaseburdeninvokingregulatorsmaintenanceactive/silencedstatepartiallyexplainlowerestimatedgenomeComparativelandscape

Similar Articles

Cited By