Antimicrobial peptide therapeutics for cystic fibrosis.

Lijuan Zhang, Jody Parente, Scott M Harris, Donald E Woods, Robert E W Hancock, Timothy J Falla
Author Information
  1. Lijuan Zhang: Helix Biomedix Inc., 22122 20th Ave. SE, Bothell, Washington 98021, USA. lzhang@helixbiomedix.com

Abstract

Greater than 90% of lung infections in cystic fibrosis (CF) patients are caused by Pseudomonas aeruginosa, and the majority of these patients subsequently die from lung damage. Current therapies are either targeted at reducing obstruction, reducing inflammation, or reducing infection. To identify potential therapeutic agents for the CF lung, 150 antimicrobial peptides consisting of three distinct structural classes were screened against mucoid and multidrug-resistant clinical isolates of P. aeruginosa, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Staphylococcus aureus. Five peptides that retained potent antimicrobial activities in physiological salt and divalent cation environment were further characterized in vivo using a rat chronic lung infection model. All animals were inoculated intratracheally with 10(4) P. aeruginosa mucoid PAO1 cells in agar beads. Three days following inoculation treatment was initiated. Animals were treated daily for 3 days with 100 microl of peptide solution (1 mg/ml) in 10 mM sodium citrate, which was deposited via either intratracheal instillation or aerosolization. Control animals received daily exposure to vehicle alone. At the end of the treatment the lungs of the animals were removed for quantitative culture. Four peptides, HBCM2, HBCM3, HBCPalpha-2, and HB71, demonstrated significant reduction in Pseudomonas bioburden in the lung of rats. Further in vivo studies provided direct evidence that anti-inflammatory activity was associated with three of these peptides. Therefore, small bioactive peptides have the potential to attack two of the components responsible for the progression of lung damage in the CF disease: infection and inflammation.

References

  1. Nat Rev Microbiol. 2004 Jun;2(6):497-504 [PMID: 15152205]
  2. Am J Infect Control. 2003 May;31(3 Suppl):S1-62 [PMID: 12762292]
  3. Intensive Care Med. 1987;13(2):106-13 [PMID: 3033040]
  4. J Antimicrob Chemother. 1987 Jun;19(6):831-8 [PMID: 3301785]
  5. Eur J Pharmacol. 1987 Oct 13;142(2):197-205 [PMID: 3121363]
  6. Scand J Infect Dis. 1988;20(5):525-9 [PMID: 3146807]
  7. J Antimicrob Chemother. 1989 Dec;24(6):937-45 [PMID: 2516085]
  8. J Infect Dis. 1991 Jan;163(1):143-9 [PMID: 1824596]
  9. Genomics. 1992 Dec;14(4):869-74 [PMID: 1282491]
  10. J Antimicrob Chemother. 1993 Apr;31(4):523-32 [PMID: 8390434]
  11. Neth J Med. 1995 Jun;46(6):288-92 [PMID: 7643944]
  12. Cell. 1997 Feb 21;88(4):553-60 [PMID: 9038346]
  13. Antimicrob Agents Chemother. 1997 Aug;41(8):1738-42 [PMID: 9257752]
  14. J Clin Invest. 1998 Sep 1;102(5):874-80 [PMID: 9727055]
  15. Mol Cell. 1998 Sep;2(3):397-403 [PMID: 9774978]
  16. Am J Physiol. 1999 Feb;276(2 Pt 1):C469-76 [PMID: 9950775]
  17. Infect Immun. 1999 Apr;67(4):2005-9 [PMID: 10085049]
  18. Am J Respir Cell Mol Biol. 1999 Apr;20(4):605-11 [PMID: 10100991]
  19. J Clin Invest. 1999 Apr;103(8):1113-7 [PMID: 10207162]
  20. Curr Protein Pept Sci. 2005 Feb;6(1):35-51 [PMID: 15638767]
  21. J Drug Target. 1999;7(1):33-41 [PMID: 10614813]
  22. FEBS Lett. 2000 May 12;473(2):154-6 [PMID: 10812064]
  23. Biochemistry. 2000 Nov 28;39(47):14504-14 [PMID: 11087404]
  24. Clin Exp Allergy. 2000 Dec;30(12):1771-6 [PMID: 11122216]
  25. J Clin Microbiol. 2001 Jan;39(1):139-45 [PMID: 11136762]
  26. Environ Microbiol. 1999 Oct;1(5):421-30 [PMID: 11207762]
  27. J Clin Microbiol. 2001 Sep;39(9):3104-9 [PMID: 11526136]
  28. Antimicrob Agents Chemother. 2001 Dec;45(12):3437-44 [PMID: 11709321]
  29. Pharmacotherapy. 2002 Feb;22(2):227-39 [PMID: 11837560]
  30. Semin Respir Infect. 2002 Mar;17(1):47-56 [PMID: 11891518]
  31. Biochem Pharmacol. 2002 Nov 1;64(9):1407-13 [PMID: 12392822]
  32. Curr Drug Targets Infect Disord. 2002 Mar;2(1):79-83 [PMID: 12462155]
  33. J Allergy Clin Immunol. 2002 Dec;110(6):823-31 [PMID: 12464945]
  34. Drugs. 2003;63(4):389-406 [PMID: 12558461]
  35. Am Rev Respir Dis. 1979 Mar;119(3):453-9 [PMID: 109021]

MeSH Term

Amino Acid Sequence
Animals
Anti-Infective Agents
Antimicrobial Cationic Peptides
Bacterial Infections
Cystic Fibrosis
Disease Models, Animal
Ear Diseases
Edema
Gram-Negative Bacteria
Humans
Lung Diseases
Mice
Microbial Sensitivity Tests
Molecular Sequence Data
Pseudomonas aeruginosa
Rats
Staphylococcus aureus

Chemicals

Anti-Infective Agents
Antimicrobial Cationic Peptides

Word Cloud

Created with Highcharts 10.0.0lungpeptidesCFaeruginosareducinginfectionanimalscysticfibrosispatientsPseudomonasdamageeitherinflammationpotentialantimicrobialthreemucoidPvivo10daystreatmentdailypeptideGreater90%infectionscausedmajoritysubsequentlydieCurrenttherapiestargetedobstructionidentifytherapeuticagents150consistingdistinctstructuralclassesscreenedmultidrug-resistantclinicalisolatesStenotrophomonasmaltophiliaAchromobacterxylosoxidansStaphylococcusaureusFiveretainedpotentactivitiesphysiologicalsaltdivalentcationenvironmentcharacterizedusingratchronicmodelinoculatedintratracheally4PAO1cellsagarbeadsThreefollowinginoculationinitiatedAnimalstreated3100microlsolution1mg/mlmMsodiumcitratedepositedviaintratrachealinstillationaerosolizationControlreceivedexposurevehiclealoneendlungsremovedquantitativecultureFourHBCM2HBCM3HBCPalpha-2HB71demonstratedsignificantreductionbioburdenratsstudiesprovideddirectevidenceanti-inflammatoryactivityassociatedThereforesmallbioactiveattacktwocomponentsresponsibleprogressiondisease:Antimicrobialtherapeutics

Similar Articles

Cited By