Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism.

Zhengjian Zhang, Joseph C Reese
Author Information
  1. Zhengjian Zhang: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA.

Abstract

In Saccharomyces cerevisiae, the repressor Crt1 and the global corepressor Ssn6-Tup1 repress the DNA damage-inducible ribonucleotide reductase (RNR) genes. Initiation of DNA damage signals causes the release of Crt1 and Ssn6-Tup1 from the promoter, coactivator recruitment, and derepression of transcription, indicating that Crt1 plays a crucial role in the switch between gene repression and activation. Here we have mapped the functional domains of Crt1 and identified two independent repression domains and a region required for gene activation. The N terminus of Crt1 is the major repression domain, it directly binds to the Ssn6-Tup1 complex, and its repression activities are dependent upon Ssn6-Tup1 and histone deacetylases (HDACs). In addition, we identified a C-terminal repression domain, which is independent of Ssn6-Tup1 and HDACs and functions at native genes in vivo. Furthermore, we show that TFIID and SWI/SNF bind to a region within the N terminus of Crt1, overlapping with but distinct from the Ssn6-Tup1 binding and repression domain, suggesting that Crt1 may have activator functions. Crt1 mutants were constructed to dissect its activator and repressor functions. All of the mutants were competent for repression of the DNA damage-inducible genes, but a majority were "derepression-defective" mutants. Further characterization of these mutants indicated that they are capable of receiving DNA damage signals and releasing the Ssn6-Tup1 complex from the promoter but are selectively impaired for TFIID and SWI/SNF recruitment. These results imply a two-step activation model of the DNA damage-inducible genes and that Crt1 functions as a signal-dependent dual-transcription activator and repressor that acts in a transient manner.

References

  1. J Biol Chem. 2003 Dec 12;278(50):50158-62 [PMID: 14525981]
  2. Methods Enzymol. 1999;304:376-99 [PMID: 10372372]
  3. EMBO J. 2004 Jun 2;23(11):2246-57 [PMID: 15116071]
  4. J Biol Chem. 2004 Sep 17;279(38):39240-50 [PMID: 15254041]
  5. Cell. 1985 Dec;43(3 Pt 2):729-36 [PMID: 3907859]
  6. Gene. 1988 Dec 15;73(1):97-111 [PMID: 2854095]
  7. Mol Cell Biol. 1990 Dec;10(12):6500-11 [PMID: 2247069]
  8. Cell. 1991 Nov 29;67(5):977-86 [PMID: 1683601]
  9. Genetics. 1992 Aug;131(4):851-66 [PMID: 1516817]
  10. Bioessays. 1993 May;15(5):333-9 [PMID: 8343143]
  11. Nature. 1994 Jul 28;370(6487):309-11 [PMID: 8035881]
  12. Genes Dev. 1994 Jun 15;8(12):1400-10 [PMID: 7926740]
  13. Nature. 1994 Oct 6;371(6497):523-7 [PMID: 7935765]
  14. Mol Cell Biol. 1995 Jun;15(6):2955-61 [PMID: 7760793]
  15. Curr Opin Genet Dev. 1995 Apr;5(2):168-73 [PMID: 7613085]
  16. Nucleic Acids Res. 1996 Mar 1;24(5):803-7 [PMID: 8600444]
  17. Mol Cell Biol. 1996 May;16(5):2518-26 [PMID: 8628320]
  18. Genes Dev. 1996 May 15;10(10):1247-59 [PMID: 8675011]
  19. Nature. 1996 Sep 12;383(6596):185-8 [PMID: 8774886]
  20. EMBO J. 1997 Jul 16;16(14):4352-60 [PMID: 9250679]
  21. Yeast. 1998 Jan 30;14(2):115-32 [PMID: 9483801]
  22. Curr Opin Cell Biol. 1998 Jun;10(3):373-83 [PMID: 9640539]
  23. Yeast. 1998 Jul;14(10):953-61 [PMID: 9717241]
  24. Cell. 1998 Sep 4;94(5):595-605 [PMID: 9741624]
  25. Methods Enzymol. 1999;304:399-414 [PMID: 10372373]
  26. Mol Cell Biol. 1999 Oct;19(10):7041-9 [PMID: 10490641]
  27. J Mol Biol. 1999 Nov 19;294(1):121-37 [PMID: 10556033]
  28. Genes Dev. 2000 Jan 15;14(2):121-41 [PMID: 10652267]
  29. EMBO J. 2000 Feb 1;19(3):400-9 [PMID: 10654939]
  30. Curr Opin Struct Biol. 2000 Feb;10(1):110-6 [PMID: 10679470]
  31. J Biol Chem. 2000 Mar 24;275(12):8397-403 [PMID: 10722672]
  32. Trends Biochem Sci. 2000 Jul;25(7):325-30 [PMID: 10871883]
  33. EMBO J. 2000 Aug 1;19(15):4091-100 [PMID: 10921889]
  34. EMBO J. 2000 Nov 1;19(21):5875-83 [PMID: 11060038]
  35. Genes Dev. 2000 Nov 1;14(21):2737-44 [PMID: 11069890]
  36. Nature. 2000 Nov 23;408(6811):433-9 [PMID: 11100718]
  37. EMBO J. 2000 Dec 15;19(24):6845-52 [PMID: 11118219]
  38. Mol Cell. 2001 Jan;7(1):117-26 [PMID: 11172717]
  39. J Biol Chem. 2001 Jan 19;276(3):1808-13 [PMID: 11056171]
  40. Mol Cell Biol. 2001 Mar;21(6):2057-69 [PMID: 11238941]
  41. J Biol Chem. 2001 Sep 7;276(36):33788-97 [PMID: 11448965]
  42. Mol Cell. 2001 Aug;8(2):473-9 [PMID: 11545749]
  43. Mol Cell Biol. 2002 Feb;22(3):693-703 [PMID: 11784848]
  44. Mol Cell Biol. 2002 May;22(10):3255-63 [PMID: 11971959]
  45. Mol Cell. 2002 Jun;9(6):1297-305 [PMID: 12086626]
  46. Mol Cell. 2002 Jun;9(6):1307-17 [PMID: 12086627]
  47. J Biol Chem. 2002 Jul 12;277(28):24926-37 [PMID: 11986307]
  48. Genes Dev. 2003 Feb 15;17(4):502-15 [PMID: 12600943]
  49. Mol Cell Biol. 1999 Jun;19(6):3940-50 [PMID: 10330134]
  50. Mol Cell. 2004 Apr 23;14(2):163-74 [PMID: 15099516]

Grants

  1. R01 GM058672/NIGMS NIH HHS
  2. GM58672/NIGMS NIH HHS

MeSH Term

Chromatin
DNA Damage
DNA-Binding Proteins
Epistasis, Genetic
Gene Expression Regulation, Fungal
Histone Deacetylases
Mutation
Nuclear Proteins
Protein Binding
Protein Structure, Tertiary
Repressor Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Structure-Activity Relationship
Transcriptional Activation

Chemicals

CYC8 protein, S cerevisiae
Chromatin
DNA-Binding Proteins
Nuclear Proteins
RFX1 protein, S cerevisiae
Repressor Proteins
Saccharomyces cerevisiae Proteins
TUP1 protein, S cerevisiae
Histone Deacetylases

Word Cloud

Created with Highcharts 10.0.0Crt1Ssn6-Tup1repressionDNArepressorgenesfunctionsmutantsdamage-inducibleactivationdomainactivatordamagesignalspromoterrecruitmentgenedomainsidentifiedindependentregionNterminuscomplexHDACsTFIIDSWI/SNFtwo-stepSaccharomycescerevisiaeglobalcorepressorrepressribonucleotidereductaseRNRInitiationcausesreleasecoactivatorderepressiontranscriptionindicatingplayscrucialroleswitchmappedfunctionaltworequiredmajordirectlybindsactivitiesdependentuponhistonedeacetylasesadditionC-terminalnativevivoFurthermoreshowbindwithinoverlappingdistinctbindingsuggestingmayconstructeddissectcompetentmajority"derepression-defective"characterizationindicatedcapablereceivingreleasingselectivelyimpairedresultsimplymodelsignal-dependentdual-transcriptionactstransientmannerMoleculargeneticanalysisyeastRfx1/Crt1revealsnovelregulatorymechanism

Similar Articles

Cited By