p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest.

Jenny S L Ho, Weili Ma, Daniel Y L Mao, Samuel Benchimol
Author Information
  1. Jenny S L Ho: Ontario Cancer Institute, Prince Margaret Hospital, Toronto, Canada.

Abstract

The ability of p53 to promote apoptosis and cell cycle arrest is believed to be important for its tumor suppression function. Besides activating the expression of cell cycle arrest and proapoptotic genes, p53 also represses a number of genes. Previous studies have shown an association between p53 activation and down-regulation of c-myc expression. However, the mechanism and physiological significance of p53-mediated c-myc repression remain unclear. Here, we show that c-myc is repressed in a p53-dependent manner in various mouse and human cell lines and mouse tissues. Furthermore, c-myc repression is not dependent on the expression of p21(WAF1). Abrogating the repression of c-myc by ectopic c-myc expression interferes with the ability of p53 to induce G(1) cell cycle arrest and differentiation but enhances the ability of p53 to promote apoptosis. We propose that p53-dependent cell cycle arrest is dependent not only on the transactivation of cell cycle arrest genes but also on the transrepression of c-myc. Chromatin immunoprecipitation assays indicate that p53 is bound to the c-myc promoter in vivo. We report that trichostatin A, an inhibitor of histone deacetylases, abrogates the ability of p53 to repress c-myc transcription. We also show that p53-mediated transcriptional repression of c-myc is accompanied by a decrease in the level of acetylated histone H4 at the c-myc promoter and by recruitment of the corepressor mSin3a. These data suggest that p53 represses c-myc transcription through a mechanism that involves histone deacetylation.

References

  1. Cell Growth Differ. 1999 Apr;10(4):223-30 [PMID: 10319992]
  2. Blood. 1998 Oct 15;92(8):2977-9 [PMID: 9763589]
  3. Genes Dev. 1999 Oct 1;13(19):2490-501 [PMID: 10521394]
  4. J Biol Chem. 2004 Dec 3;279(49):50976-85 [PMID: 15371422]
  5. Mol Cell. 2004 Dec 3;16(5):725-36 [PMID: 15574328]
  6. J Biol Chem. 2000 Oct 27;275(43):33798-805 [PMID: 10931841]
  7. J Biol Chem. 2001 Jan 5;276(1):298-305 [PMID: 11013253]
  8. Mol Cell Biol. 2001 Feb;21(4):1066-76 [PMID: 11158294]
  9. Mol Cell Biol. 2001 Jul;21(14):4725-36 [PMID: 11416148]
  10. Mol Cell Biol. 2001 Aug;21(15):5063-70 [PMID: 11438662]
  11. Cancer Res. 2001 Aug 15;61(16):6234-8 [PMID: 11507077]
  12. J Biol Chem. 2002 Feb 1;277(5):3247-57 [PMID: 11714700]
  13. Genes Dev. 2002 Apr 15;16(8):933-47 [PMID: 11959842]
  14. Genes Dev. 2002 Apr 15;16(8):984-93 [PMID: 11959846]
  15. Oncogene. 2002 Apr 18;21(17):2613-22 [PMID: 11965534]
  16. Mol Cell. 2002 May;9(5):1031-44 [PMID: 12049739]
  17. Cancer Cell. 2002 Apr;1(3):289-98 [PMID: 12086865]
  18. Cell. 2002 Jul 12;110(1):19-32 [PMID: 12150994]
  19. Semin Cancer Biol. 2002 Oct;12(5):339-46 [PMID: 12191633]
  20. Nat Rev Cancer. 2002 Oct;2(10):764-76 [PMID: 12360279]
  21. Nature. 2002 Oct 17;419(6908):729-34 [PMID: 12384701]
  22. Cell. 2003 Mar 21;112(6):779-91 [PMID: 12654245]
  23. Cell Death Differ. 2003 Apr;10(4):404-8 [PMID: 12719716]
  24. J Biol Chem. 2003 Aug 29;278(35):32507-16 [PMID: 12748190]
  25. Oncogene. 2004 Feb 5;23(5):1088-97 [PMID: 14716294]
  26. FEBS Lett. 2004 Feb 27;560(1-3):210-4 [PMID: 14988024]
  27. Nature. 1986 Apr 24-30;320(6064):760-3 [PMID: 3458027]
  28. Cell. 1987 Nov 6;51(3):371-81 [PMID: 3499231]
  29. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2638-42 [PMID: 3357885]
  30. Mol Cell Biol. 1991 May;11(5):2842-51 [PMID: 1850105]
  31. Cell. 1992 Nov 13;71(4):587-97 [PMID: 1423616]
  32. Mol Cell Biol. 1992 Dec;12(12):5581-92 [PMID: 1448088]
  33. Mol Cell Biol. 1993 Mar;13(3):1456-63 [PMID: 8441390]
  34. Oncogene. 1993 May;8(5):1183-93 [PMID: 8479742]
  35. Nat Genet. 1992 Apr;1(1):45-9 [PMID: 1301998]
  36. Cell. 1993 Nov 19;75(4):817-25 [PMID: 8242752]
  37. Mol Cell Biol. 1993 Dec;13(12):7942-52 [PMID: 8247009]
  38. Oncogene. 1993 Dec;8(12):3427-31 [PMID: 8247547]
  39. Mol Cell Biol. 1994 Apr;14(4):2556-63 [PMID: 8139558]
  40. Cell. 1994 Aug 26;78(4):703-11 [PMID: 8069917]
  41. Oncogene. 1995 Oct 5;11(7):1409-15 [PMID: 7478565]
  42. Genes Dev. 1996 Dec 1;10(23):2971-80 [PMID: 8956998]
  43. Mol Cell Biol. 1997 Feb;17(2):723-31 [PMID: 9001226]
  44. Oncogene. 1997 Jun 12;14(23):2825-34 [PMID: 9190899]
  45. Cell Growth Differ. 1997 Aug;8(8):829-38 [PMID: 9269892]
  46. Curr Biol. 1998 Feb 26;8(5):279-82 [PMID: 9501072]
  47. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10493-8 [PMID: 9724731]
  48. Genes Dev. 1999 Jun 1;13(11):1367-81 [PMID: 10364155]

MeSH Term

Acetylation
Animals
Base Sequence
Cell Cycle Proteins
Cell Differentiation
Cell Line
Cyclin-Dependent Kinase Inhibitor p21
G1 Phase
Gene Expression Regulation
Histones
Humans
Mice
Molecular Sequence Data
Promoter Regions, Genetic
Protein Binding
Proto-Oncogene Proteins c-myc
Transcription, Genetic
Tumor Suppressor Protein p53

Chemicals

CDKN1A protein, human
Cdkn1a protein, mouse
Cell Cycle Proteins
Cyclin-Dependent Kinase Inhibitor p21
Histones
Proto-Oncogene Proteins c-myc
Tumor Suppressor Protein p53

Word Cloud

Created with Highcharts 10.0.0c-mycp53cellcyclearrestrepressionabilityexpressiongenesalsohistonepromoteapoptosisrepressesmechanismp53-mediatedshowp53-dependentmousedependentpromotertranscriptiontranscriptionalbelievedimportanttumorsuppressionfunctionBesidesactivatingproapoptoticnumberPreviousstudiesshownassociationactivationdown-regulationHoweverphysiologicalsignificanceremainunclearrepressedmannervarioushumanlinestissuesFurthermorep21WAF1AbrogatingectopicinterferesinduceG1differentiationenhancesproposetransactivationtransrepressionChromatinimmunoprecipitationassaysindicateboundvivoreporttrichostatininhibitordeacetylasesabrogatesrepressaccompanieddecreaselevelacetylatedH4recruitmentcorepressormSin3adatasuggestinvolvesdeacetylationp53-DependentrequiredG1

Similar Articles

Cited By