Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations.

C Henricsson, M C de Jesus Ferreira, K Hedfalk, K Elbing, C Larsson, R M Bill, J Norbeck, S Hohmann, L Gustafsson
Author Information
  1. C Henricsson: Department of Chemistry and Bioscience-Molecular Biotechnology, Chalmers University of Technology, Box 462, SE-405 30 Göteborg, Sweden.

Abstract

The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.

References

  1. Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69 [PMID: 10477308]
  2. Mol Gen Genet. 1986 Jan;202(1):75-82 [PMID: 3007939]
  3. Microbiology. 1997 Jan;143 ( Pt 1):203-18 [PMID: 9025295]
  4. Biochemistry. 1992 May 19;31(19):4729-35 [PMID: 1533788]
  5. Yeast. 1997 Dec;13(16):1519-34 [PMID: 9509572]
  6. Appl Environ Microbiol. 2004 Sep;70(9):5323-30 [PMID: 15345416]
  7. Yeast. 1989 Jul-Aug;5(4):285-90 [PMID: 2528863]
  8. Arch Microbiol. 1976 Nov 2;110(23):177-83 [PMID: 1015945]
  9. Arch Microbiol. 1993;160(4):324-8 [PMID: 8239883]
  10. FEMS Microbiol Rev. 1997 Aug;21(1):85-111 [PMID: 9299703]
  11. EMBO J. 1992 Nov;11(11):3811-4 [PMID: 1396575]
  12. Microbiology. 1999 Mar;145 ( Pt 3):703-14 [PMID: 10217505]
  13. Structure. 1998 Feb 15;6(2):195-210 [PMID: 9519410]
  14. Arch Microbiol. 1996 Nov;166(5):283-92 [PMID: 8929273]
  15. Trends Biochem Sci. 1993 Jan;18(1):13-20 [PMID: 8438231]
  16. Eur J Biochem. 1996 Oct 15;241(2):633-43 [PMID: 8917466]
  17. Adv Microb Physiol. 1981;22:123-83 [PMID: 7036694]
  18. Enzyme Microb Technol. 2000 Jun 1;26(9-10):688-698 [PMID: 10862874]
  19. Mol Microbiol. 1995 Apr;16(1):157-67 [PMID: 7651133]
  20. Eur J Biochem. 1991 Aug 1;199(3):511-8 [PMID: 1868842]
  21. J Biol Chem. 1999 May 28;274(22):15350-9 [PMID: 10336421]
  22. Enzyme Microb Technol. 2000 Jun 1;26(9-10):724-736 [PMID: 10862878]
  23. FEMS Microbiol Rev. 1993 Apr;10(3-4):229-42 [PMID: 8318258]
  24. Yeast. 1992 Jul;8(7):501-17 [PMID: 1523884]
  25. FEBS Lett. 1999 Dec 31;464(3):123-8 [PMID: 10618490]
  26. Int J Food Microbiol. 2001 Dec 30;71(2-3):111-24 [PMID: 11789928]
  27. FEMS Yeast Res. 2002 May;2(2):183-201 [PMID: 12702307]
  28. Eur J Biochem. 1993 May 15;214(1):163-72 [PMID: 8508788]
  29. Curr Biol. 1996 Nov 1;6(11):1426-34 [PMID: 8939604]
  30. Yeast. 2002 Jun 15;19(8):713-26 [PMID: 12185841]
  31. Yeast. 1989 May-Jun;5(3):159-65 [PMID: 2660462]
  32. J Bacteriol. 1997 Dec;179(23):7243-50 [PMID: 9393686]
  33. Yeast. 2001 Aug;18(11):1023-33 [PMID: 11481673]
  34. Anal Biochem. 1981 Nov 1;117(2):307-10 [PMID: 6172996]
  35. Eur J Biochem. 2004 Dec;271(23-24):4855-64 [PMID: 15606773]
  36. Eur J Biochem. 1997 Apr 15;245(2):324-33 [PMID: 9151960]
  37. Yeast. 1993 Jul;9(7):761-70 [PMID: 8368010]
  38. J Bacteriol. 1999 Aug;181(15):4673-5 [PMID: 10419970]
  39. EMBO Rep. 2004 May;5(5):532-7 [PMID: 15071495]
  40. Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34 [PMID: 9529885]
  41. Genet Res. 1992 Feb;59(1):35-48 [PMID: 1572535]

MeSH Term

Culture Media
Ethanol
Fermentation
Fructose
Genetic Engineering
Glucose
Glucose Transport Proteins, Facilitative
Monosaccharide Transport Proteins
Oxygen Consumption
Phenotype
Recombinant Fusion Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Transformation, Genetic
Wine

Chemicals

Culture Media
Glucose Transport Proteins, Facilitative
HXT1 protein, S cerevisiae
HXT7 protein, S cerevisiae
Monosaccharide Transport Proteins
Recombinant Fusion Proteins
Saccharomyces cerevisiae Proteins
Fructose
Ethanol
Glucose

Word Cloud

Created with Highcharts 10.0.0strainV5TM6*PglucosehighrespiratorycerevisiaeexternalconcentrationsTM6*phenotypeSaccharomycesKOYfluxethanolencodingproteinsHxt1Hxt7resultingchimericgenehalfhxtnullhxt1-7DeltaalsomutantproducedcomparedparentalbiomassrecentlydescribedknowledgereportedScompletelyredirectsfermentationrespirationeven27portionsgenespredominanthexosetransporterfusedwithinregionstransmembraneTMdomain6encodedchimeracomposedamino-terminalcarboxy-terminalsubsequentlyintegratedgenomestudydemonstratedtransferabilityderivativeusedenologyshowusingnecessarytransformcompleteconstructobtainnon-ethanol-producingobtainedtransformationminoramountscultured5%Despitefactreduced30%specificrate85%wild-typeEvenrelevantpotentialuseproductionheterologouslow-alcoholbeveragesobservationyieldincreased50%Engineeringnovelwine

Similar Articles

Cited By