Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive.

Daniel J Tollin, Tom C T Yin
Author Information
  1. Daniel J Tollin: Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. Daniel.tollin@uchsc.edu

Abstract

The lateral superior olive (LSO) is believed to encode differences in sound level at the two ears, a cue for azimuthal sound location. Most high-frequency-sensitive LSO neurons are binaural, receiving inputs from both ears. An inhibitory input from the contralateral ear, via the medial nucleus of the trapezoid body (MNTB), and excitatory input from the ipsilateral ear enable level differences to be encoded. However, the classical descriptions of low-frequency-sensitive neurons report primarily monaural cells with no contralateral inhibition. Anatomical and physiological evidence, however, shows that low-frequency LSO neurons receive low-frequency inhibitory input from ipsilateral MNTB, which in turn receives excitatory input from the contralateral cochlear nucleus and low-frequency excitatory input from the ipsilateral cochlear nucleus. Therefore, these neurons would be expected to be binaural with contralateral inhibition. Here, we re-examined binaural interaction in low-frequency (less than approximately 3 kHz) LSO neurons and phase locking in the MNTB. Phase locking to low-frequency tones in MNTB and ipsilaterally driven LSO neurons with frequency sensitivities <1.2 kHz was enhanced relative to the auditory nerve. Moreover, most low-frequency LSO neurons exhibited contralateral inhibition: ipsilaterally driven responses were suppressed by raising the level of the contralateral stimulus; most neurons were sensitive to interaural time delays in pure tone and noise stimuli such that inhibition was nearly maximal when the stimuli were presented to the ears in-phase. The data demonstrate that low-frequency LSO neurons of cat are not monaural and can exhibit contralateral inhibition like their high-frequency counterparts.

References

  1. J Neurophysiol. 1995 Mar;73(3):1043-62 [PMID: 7608754]
  2. J Neurophysiol. 1994 Mar;71(3):1022-36 [PMID: 8201399]
  3. J Neurophysiol. 1995 Apr;73(4):1653-67 [PMID: 7643173]
  4. J Neurophysiol. 1995 Apr;73(4):1668-90 [PMID: 7643174]
  5. J Neurophysiol. 1996 Oct;76(4):2137-56 [PMID: 8899590]
  6. J Neurophysiol. 1997 Sep;78(3):1222-36 [PMID: 9310414]
  7. J Neurophysiol. 1998 Jan;79(1):253-69 [PMID: 9425196]
  8. J Acoust Soc Am. 1998 Jun;103(6):3509-26 [PMID: 9637035]
  9. J Acoust Soc Am. 1998 Jun;103(6):3527-39 [PMID: 9637036]
  10. J Neurophysiol. 1998 Jun;79(6):3127-42 [PMID: 9636113]
  11. J Neurosci. 1998 Aug 1;18(15):6026-39 [PMID: 9671687]
  12. J Comp Physiol Psychol. 1948 Feb;41(1):35-9 [PMID: 18904764]
  13. Hear Res. 1990 Nov;49(1-3):321-34 [PMID: 2292504]
  14. Hear Res. 2000 Nov;149(1-2):199-215 [PMID: 11033259]
  15. Nat Neurosci. 2001 Apr;4(4):396-401 [PMID: 11276230]
  16. J Acoust Soc Am. 2001 Aug;110(2):1074-88 [PMID: 11519576]
  17. Nature. 2002 May 30;417(6888):543-7 [PMID: 12037566]
  18. J Assoc Res Otolaryngol. 2003 Mar;4(1):1-23 [PMID: 12098017]
  19. Neuroscientist. 2003 Apr;9(2):127-43 [PMID: 12708617]
  20. Nat Rev Neurosci. 2003 Jul;4(7):540-50 [PMID: 12838329]
  21. J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3317-26 [PMID: 14714812]
  22. J Comp Neurol. 2004 May 3;472(3):330-44 [PMID: 15065128]
  23. Acta Otolaryngol. 1966 Mar;61(3):255-69 [PMID: 5960076]
  24. J Neurophysiol. 1968 May;31(3):442-54 [PMID: 5687764]
  25. J Neurophysiol. 1969 Jul;32(4):613-36 [PMID: 5810617]
  26. J Neurophysiol. 1971 May;34(3):467-83 [PMID: 5560042]
  27. Ciba Found Symp. 1970;:241-73 [PMID: 5210916]
  28. J Neurophysiol. 1977 Mar;40(2):296-318 [PMID: 845625]
  29. Science. 1979 Nov 2;206(4418):586-8 [PMID: 493964]
  30. J Acoust Soc Am. 1980 Oct;68(4):1115-22 [PMID: 7419827]
  31. J Neurophysiol. 1983 Oct;50(4):1020-42 [PMID: 6631459]
  32. Exp Brain Res. 1983;52(3):385-99 [PMID: 6653700]
  33. J Comp Neurol. 1985 Feb 8;232(2):261-85 [PMID: 3973093]
  34. J Comp Neurol. 1985 Aug 15;238(3):249-62 [PMID: 4044914]
  35. J Acoust Soc Am. 1986 Jan;79(1):100-13 [PMID: 3944336]
  36. J Neurophysiol. 1987 May;57(5):1338-60 [PMID: 3585471]
  37. J Neurosci. 1987 Nov;7(11):3803-11 [PMID: 2824718]
  38. J Comp Neurol. 1989 Jan 15;279(3):382-96 [PMID: 2918077]
  39. J Neurophysiol. 1989 Dec;62(6):1303-29 [PMID: 2600627]
  40. J Neurophysiol. 1990 Aug;64(2):465-88 [PMID: 2213127]
  41. J Neurophysiol. 1991 Mar;65(3):598-605 [PMID: 2051197]
  42. J Comp Neurol. 1991 Aug 15;310(3):377-400 [PMID: 1723989]
  43. J Comp Neurol. 1991 Dec 22;314(4):707-20 [PMID: 1816272]
  44. J Comp Neurol. 1992 May 1;319(1):100-22 [PMID: 1317390]
  45. J Neurosci. 1992 Jul;12(7):2819-37 [PMID: 1351938]
  46. J Neurosci. 1992 Aug;12(8):3200-16 [PMID: 1494953]
  47. J Comp Neurol. 1992 Oct 22;324(4):522-38 [PMID: 1430335]
  48. J Comp Neurol. 1993 May 8;331(2):245-60 [PMID: 8509501]
  49. J Acoust Soc Am. 1995 Aug;98(2 Pt 1):785-97 [PMID: 7642817]

Grants

  1. P01 DC000116/NIDCD NIH HHS
  2. DC-00116/NIDCD NIH HHS
  3. DC-02840/NIDCD NIH HHS
  4. R01 DC006865/NIDCD NIH HHS
  5. DC-006865/NIDCD NIH HHS
  6. R01 DC002840/NIDCD NIH HHS
  7. R01 DC007177/NIDCD NIH HHS
  8. DC-005122/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Action Potentials
Animals
Auditory Perception
Auditory Threshold
Cats
Evoked Potentials, Auditory
Female
Neurons
Olivary Nucleus

Word Cloud

Created with Highcharts 10.0.0neuronslow-frequencyLSOcontralateralinputlevelMNTBinhibitionearsbinauralnucleusexcitatoryipsilaterallateralsuperiorolivedifferencessoundinhibitoryearmonauralcochlearkHzphaselockingipsilaterallydrivenstimulibelievedencodetwocueazimuthallocationhigh-frequency-sensitivereceivinginputsviamedialtrapezoidbodyenableencodedHoweverclassicaldescriptionslow-frequency-sensitivereportprimarilycellsAnatomicalphysiologicalevidencehowevershowsreceiveturnreceivesThereforeexpectedre-examinedinteractionlessapproximately3Phasetonesfrequencysensitivities<12enhancedrelativeauditorynerveMoreoverexhibitedinhibition:responsessuppressedraisingstimulussensitiveinterauraltimedelayspuretonenoisenearlymaximalpresentedin-phasedatademonstratecatcanexhibitlikehigh-frequencycounterpartsInterauraldifferencesensitivity

Similar Articles

Cited By