Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress.

Navasona Krishnan, Donald F Becker
Author Information
  1. Navasona Krishnan: Department of Biochemistry, University of Nebraska, N258 Beadle Center, Lincoln, Nebraska 68588, USA.

Abstract

Proline is converted to glutamate in two successive steps by the proline utilization A (PutA) flavoenzyme in gram-negative bacteria. PutA contains a proline dehydrogenase domain that catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidation of proline to delta1-pyrroline-5-carboxylate (P5C) and a P5C dehydrogenase domain that catalyzes the NAD+-dependent oxidation of P5C to glutamate. Here, we characterize PutA from Helicobacter hepaticus (PutA(Hh)) and Helicobacter pylori (PutA(Hp)) to provide new insights into proline metabolism in these gastrointestinal pathogens. Both PutA(Hh) and PutA(Hp) lack DNA binding activity, in contrast to PutA from Escherichia coli (PutA(Ec)), which both regulates and catalyzes proline utilization. PutA(Hh) and PutA(Hp) display catalytic activities similar to that of PutA(Ec) but have higher oxygen reactivity. PutA(Hh) and PutA(Hp) exhibit 100-fold-higher turnover numbers (approximately 30 min(-1)) than PutA(Ec) (<0. 3 min(-1)) using oxygen as an electron acceptor during catalytic turnover with proline. Consistent with increased oxygen reactivity, PutA(Hh) forms a reversible FAD-sulfite adduct. The significance of increased oxygen reactivity in PutA(Hh) and PutA(Hp) was probed by oxidative stress studies in E. coli. Expression of PutA(Ec) and PutA from Bradyrhizobium japonicum, which exhibit low oxygen reactivity, does not diminish stress survival rates of E. coli cell cultures. In contrast, PutA(Hp) and PutA(Hh) expression dramatically reduces E. coli cell survival and is correlated with relatively lower proline levels and increased hydrogen peroxide formation. The discovery of reduced oxygen species formation by PutA suggests that proline catabolism may influence redox homeostasis in the ecological niches of these Helicobacter species.

References

  1. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2036-40 [PMID: 3353366]
  2. J Biol Chem. 1989 Feb 15;264(5):2518-27 [PMID: 2914919]
  3. J Bacteriol. 1991 Jan;173(1):211-9 [PMID: 1987118]
  4. Microbiology. 2003 Aug;149(Pt 8):2023-30 [PMID: 12904542]
  5. Appl Environ Microbiol. 2003 Nov;69(11):6527-32 [PMID: 14602584]
  6. Infect Immun. 2004 Mar;72(3):1391-6 [PMID: 14977943]
  7. Biochim Biophys Acta. 1999 Sep 21;1421(1):5-18 [PMID: 10561467]
  8. Appl Environ Microbiol. 1999 Dec;65(12):5272-8 [PMID: 10583976]
  9. J Bacteriol. 2000 Jan;182(1):91-9 [PMID: 10613867]
  10. Biochem Soc Trans. 2000;28(4):283-96 [PMID: 10961912]
  11. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10723-8 [PMID: 11005854]
  12. Appl Environ Microbiol. 2000 Dec;66(12):5221-5 [PMID: 11097893]
  13. Clin Microbiol Rev. 2001 Jan;14(1):59-97 [PMID: 11148003]
  14. Cancer Res. 2001 Mar 1;61(5):1810-5 [PMID: 11280728]
  15. Biochemistry. 2001 Apr 17;40(15):4714-21 [PMID: 11294639]
  16. Appl Environ Microbiol. 2001 Sep;67(9):3860-5 [PMID: 11525978]
  17. J Bacteriol. 2001 Dec;183(24):7173-81 [PMID: 11717276]
  18. J Bacteriol. 2001 Dec;183(24):7182-9 [PMID: 11717277]
  19. Biochemistry. 2002 May 21;41(20):6525-32 [PMID: 12009917]
  20. J Bacteriol. 2002 Oct;184(20):5633-40 [PMID: 12270821]
  21. Arch Biochem Biophys. 2002 Dec 1;408(1):131-6 [PMID: 12485611]
  22. Appl Environ Microbiol. 2003 Jan;69(1):212-9 [PMID: 12513997]
  23. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):62-7 [PMID: 12506204]
  24. J Biol Chem. 2003 Mar 14;278(11):9784-9 [PMID: 12514185]
  25. Microbiology. 2004 Apr;150(Pt 4):1055-61 [PMID: 15073314]
  26. J Biol Chem. 2004 Jul 23;279(30):31171-6 [PMID: 15155740]
  27. J Biol Chem. 2004 Sep 17;279(38):40161-73 [PMID: 15247269]
  28. Mol Microbiol. 2004 Sep;53(5):1397-406 [PMID: 15387818]
  29. Biochemistry. 2004 Oct 5;43(39):12539-48 [PMID: 15449943]
  30. J Biol Chem. 1991 Apr 15;266(11):6957-65 [PMID: 1849898]
  31. Microbiol Rev. 1991 Dec;55(4):561-85 [PMID: 1779927]
  32. J Biol Chem. 1992 Jun 25;267(18):13086-92 [PMID: 1618807]
  33. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4295-8 [PMID: 8483946]
  34. J Biol Chem. 1994 Sep 9;269(36):22459-62 [PMID: 8077188]
  35. FASEB J. 1995 Aug;9(11):995-1003 [PMID: 7649415]
  36. J Bacteriol. 1995 Nov;177(22):6432-9 [PMID: 7592417]
  37. Appl Environ Microbiol. 1996 Jan;62(1):221-9 [PMID: 8572700]
  38. Mol Microbiol. 1996 Dec;22(5):1025-33 [PMID: 8971722]
  39. J Bacteriol. 1997 Apr;179(8):2788-91 [PMID: 9098084]
  40. Nature. 1999 Jan 14;397(6715):176-80 [PMID: 9923682]
  41. J Mol Biol. 1999 May 21;288(5):811-24 [PMID: 10329181]
  42. J Biol Chem. 1957 Apr;225(2):825-34 [PMID: 13416285]
  43. J Biol Chem. 2004 Nov 19;279(47):48742-50 [PMID: 15361522]
  44. J Bacteriol. 2004 Dec;186(23):8149-52 [PMID: 15547289]
  45. Helicobacter. 2004 Dec;9(6):614-21 [PMID: 15610074]
  46. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3459-64 [PMID: 15699356]
  47. J Biol Chem. 2005 Mar 25;280(12):11902-10 [PMID: 15665328]
  48. Biosci Biotechnol Biochem. 2005 Apr;69(4):740-6 [PMID: 15849412]
  49. Biochemistry. 2005 Jun 28;44(25):9130-9 [PMID: 15966737]
  50. J Biol Chem. 2005 Aug 12;280(32):29346-54 [PMID: 15914462]
  51. Am J Pathol. 1997 Oct;151(4):933-41 [PMID: 9327726]
  52. Biochemistry. 1998 Jul 21;37(29):10469-77 [PMID: 9671517]
  53. Adv Microb Physiol. 1998;40:137-89 [PMID: 9889978]
  54. Microbiology. 2003 Mar;149(Pt 3):665-72 [PMID: 12634335]
  55. J Bacteriol. 2003 Jul;185(13):3842-52 [PMID: 12813078]
  56. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7901-6 [PMID: 12810954]
  57. Biochemistry. 2004 Oct 19;43(41):13165-74 [PMID: 15476410]
  58. Plant Physiol. 2004 Oct;136(2):3313-8 [PMID: 15448193]
  59. J Biol Chem. 1969 Aug 10;244(15):3999-4006 [PMID: 4389773]
  60. Anal Biochem. 1976 Aug;74(2):430-40 [PMID: 962101]
  61. J Biol Chem. 1978 Sep 10;253(17):5997-6001 [PMID: 355248]
  62. Can J Biochem. 1979 Oct;57(10):1191-9 [PMID: 396008]
  63. J Biol Chem. 1981 Sep 25;256(18):9762-6 [PMID: 6270101]
  64. J Mol Biol. 1981 May 5;148(1):21-44 [PMID: 7031262]
  65. Eur J Biochem. 1983 Jul 15;134(1):77-82 [PMID: 6305659]
  66. Arch Biochem Biophys. 1986 Jul;248(1):166-74 [PMID: 3729412]
  67. Proc Natl Acad Sci U S A. 1987 Jan;84(2):373-7 [PMID: 3540963]

Grants

  1. P20 RR017675/NCRR NIH HHS
  2. R01 GM061068/NIGMS NIH HHS
  3. GM061068/NIGMS NIH HHS
  4. P20 RR-017675-02/NCRR NIH HHS

MeSH Term

Bacterial Proteins
Helicobacter
Hydrogen Peroxide
Membrane Proteins
Oxidative Stress
Oxygen
Proline
Proline Oxidase
Species Specificity

Chemicals

Bacterial Proteins
Membrane Proteins
PutA protein, Bacteria
Proline
Hydrogen Peroxide
Proline Oxidase
Oxygen

Word Cloud

Created with Highcharts 10.0.0PutAprolineHhHpoxygenreactivityHelicobactercoliEccatalyzesP5CincreasedstressEspeciesglutamateutilizationdehydrogenasedomainoxidationcontrastcatalyticexhibitturnovermin-1oxidativesurvivalcellformationProlineconvertedtwosuccessivestepsflavoenzymegram-negativebacteriacontainsflavinadeninedinucleotideFAD-dependentdelta1-pyrroline-5-carboxylateNAD+-dependentcharacterizehepaticuspyloriprovidenewinsightsmetabolismgastrointestinalpathogenslackDNAbindingactivityEscherichiaregulatesdisplayactivitiessimilarhigher100-fold-highernumbersapproximately30<03usingelectronacceptorConsistentformsreversibleFAD-sulfiteadductsignificanceprobedstudiesExpressionBradyrhizobiumjaponicumlowdiminishratesculturesexpressiondramaticallyreducescorrelatedrelativelylowerlevelshydrogenperoxidediscoveryreducedsuggestscatabolismmayinfluenceredoxhomeostasisecologicalnichesOxygenproline-linked

Similar Articles

Cited By