In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state.

Ben Smith, James D Oliver
Author Information
  1. Ben Smith: Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

Abstract

Isolation of Vibrio vulnificus during winter months is difficult due to the entrance of these cells into the viable but nonculturable (VBNC) state. While several studies have investigated in vitro gene expression upon entrance into and persistence within the VBNC state, to our knowledge, no in situ studies have been reported. We incubated clinical and environmental isolates of V. vulnificus in estuarine waters during winter months to monitor the expression of several genes during the VBNC state and compared these to results from in vitro studies. katG (periplasmic catalase) was down-regulated during the VBNC state in vitro and in situ compared to the constitutively expressed gene tufA. Our results indicate that the loss of catalase activity we previously reported is a direct result of katG repression, which likely accounts for the VBNC response of this pathogen. While expression of vvhA (hemolysin) was detectable in environmental strains during in situ incubation, it ceased in all cases by ca. 1 h. These results suggest that the natural role of hemolysin in V. vulnificus may be in osmoprotection and/or the cold shock response. Differences in expression of the capsular genes wza and wzb were observed in the two recently reported genotypes of this species. Expression of rpoS, encoding the stress sigma factor RpoS, was continuous upon entry into the VBNC state during both in situ and in vitro studies. We found the half-life of mRNA to be less than 60 minutes, confirming that mRNA detection in these VBNC cells is a result of de novo RNA synthesis.

References

  1. J Bacteriol. 2002 Dec;184(23):6739-45 [PMID: 12426365]
  2. Appl Environ Microbiol. 2000 Oct;66(10):4564-7 [PMID: 11010918]
  3. Appl Environ Microbiol. 1992 Oct;58(10):3257-62 [PMID: 1444362]
  4. J Bacteriol. 2000 Jun;182(12):3405-15 [PMID: 10852871]
  5. World J Microbiol Biotechnol. 1996 Jan;12(1):28-31 [PMID: 24415083]
  6. FEMS Microbiol Lett. 1994 Apr 1;117(2):181-7 [PMID: 8181721]
  7. Diagn Microbiol Infect Dis. 1987 Feb;6(2):109-17 [PMID: 3816129]
  8. Appl Environ Microbiol. 1998 Apr;64(4):1459-65 [PMID: 9546182]
  9. Microbiol Immunol. 2005;49(4):381-9 [PMID: 15840964]
  10. Infect Immun. 2001 Oct;69(10):6119-22 [PMID: 11553550]
  11. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9697-702 [PMID: 12119387]
  12. Appl Environ Microbiol. 1995 Jul;61(7):2620-3 [PMID: 7618873]
  13. Infect Immun. 1981 Nov;34(2):503-7 [PMID: 7309236]
  14. Emerg Infect Dis. 1999 Sep-Oct;5(5):607-25 [PMID: 10511517]
  15. J Bacteriol. 2002 Mar;184(5):1359-69 [PMID: 11844765]
  16. Life Sci. 1996;59(3):PL41-7 [PMID: 8699927]
  17. Appl Environ Microbiol. 1995 Jul;61(7):2624-30 [PMID: 7618874]
  18. Epidemiol Infect. 1994 Apr;112(2):285-90 [PMID: 8150002]
  19. Infect Immun. 1999 May;67(5):2250-7 [PMID: 10225881]
  20. Appl Environ Microbiol. 2004 Sep;70(9):5469-76 [PMID: 15345434]
  21. Appl Environ Microbiol. 1998 Dec;64(12):4676-82 [PMID: 9835548]
  22. Appl Environ Microbiol. 1982 Oct;44(4):820-4 [PMID: 7149714]
  23. Appl Microbiol. 1972 Nov;24(5):805-11 [PMID: 4565639]
  24. J Appl Bacteriol. 1995 Oct;79(4):399-408 [PMID: 7592133]
  25. J Appl Microbiol. 2005;98(4):951-61 [PMID: 15752342]
  26. Appl Environ Microbiol. 2003 Oct;69(10):6114-20 [PMID: 14532069]
  27. Appl Environ Microbiol. 1982 Dec;44(6):1466-70 [PMID: 7159088]
  28. Appl Environ Microbiol. 1991 Sep;57(9):2640-4 [PMID: 1768138]
  29. Appl Environ Microbiol. 1997 Mar;63(3):1002-5 [PMID: 16535534]
  30. Microbiol Rev. 1987 Sep;51(3):365-79 [PMID: 3312987]
  31. Appl Environ Microbiol. 2003 Dec;69(12):7462-6 [PMID: 14660399]
  32. FEMS Microbiol Ecol. 2004 Nov 1;50(3):133-42 [PMID: 19712354]
  33. J Microbiol. 2005 Feb;43 Spec No:93-100 [PMID: 15765062]
  34. J Appl Microbiol. 2002;92(4):633-40 [PMID: 11966903]
  35. Appl Environ Microbiol. 1998 Apr;64(4):1313-8 [PMID: 9546166]
  36. Int J Food Microbiol. 1992 Jan-Feb;15(1-2):153-63 [PMID: 1622752]
  37. Infect Immun. 2001 Nov;69(11):6893-901 [PMID: 11598064]
  38. Mol Microbiol. 2003 Feb;47(4):879-89 [PMID: 12581346]
  39. Appl Environ Microbiol. 2002 Nov;68(11):5641-6 [PMID: 12406760]
  40. Emerg Infect Dis. 2004 Aug;10(8):1363-8 [PMID: 15496235]
  41. Infect Immun. 1981 Aug;33(2):583-90 [PMID: 7024134]

MeSH Term

Bacterial Proteins
Base Sequence
Catalase
DNA, Bacterial
Gene Expression
Half-Life
Humans
RNA Stability
RNA, Bacterial
RNA, Messenger
Seasons
Seawater
Vibrio vulnificus

Chemicals

Bacterial Proteins
DNA, Bacterial
RNA, Bacterial
RNA, Messenger
Catalase

Word Cloud

Created with Highcharts 10.0.0VBNCstatevitroexpressionsituvulnificusstudiesgenereportedresultsVibriowintermonthsentrancecellsviablenonculturableseveraluponpersistencewithinenvironmentalVgenescomparedkatGcatalaseresultresponsehemolysinentrymRNAIsolationdifficultdueinvestigatedknowledgeincubatedclinicalisolatesestuarinewatersmonitorperiplasmicdown-regulatedconstitutivelyexpressedtufAindicatelossactivitypreviouslydirectrepressionlikelyaccountspathogenvvhAdetectablestrainsincubationceasedcasesca1hsuggestnaturalrolemayosmoprotectionand/orcoldshockDifferencescapsularwzawzbobservedtworecentlygenotypesspeciesExpressionrpoSencodingstresssigmafactorRpoScontinuousfoundhalf-lifeless60minutesconfirmingdetectiondenovoRNAsynthesisresuscitation

Similar Articles

Cited By