Screening for transglutaminase-catalyzed modifications by peptide mass finger printing using multipoint recalibration on recognized peaks for high mass accuracy.

Cecilia Sundby Emanuelsson, Sandor Boros, Karin Hjernoe, Wilbert C Boelens, Peter Hojrup
Author Information
  1. Cecilia Sundby Emanuelsson: Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-221 00 Lund, Sweden. Cecilia.Emanuelsson@biokem.lu.se

Abstract

Detection of posttranslational modifications is expected to be one of the major future experimental challenges for proteomics. We describe herein a mass spectrometric procedure to screen for protein modifications by peptide mass fingerprinting that is based on post-data acquisition improvement of the mass accuracy by exporting the peptide mass values into analytical software for multipoint recalibration on recognized peaks. Subsequently, the calibrated peak mass data set is used in searching for modified peptides, i.e., peptides possessing specific mass deviations. In order to identify the location of Lys- and Gln-residues available for transglutaminase-catalyzed isopeptide bond formation, mammalian small heat shock proteins (sHsps) were screened for labeling with the two hexapeptide probes GQDPVR and GNDPVK in presence of transglutaminase. Peptide modification due to cross-linking of the GQDPVR hexa-peptide probe was detected for C-terminal Lys residues. Novel transglutaminase-susceptible Gln sites were identified in two sHsps (Q31/Q27 in Hsp20 and HspB2, respectively), by cross-linking of the GNDPVK hexapeptide probe. Deamidation of specific Gln residues was also detected, as well an isopeptide derived from intramolecular Gln-Lys isopeptide bond formation. We conclude that peptide mass fingerprinting can be an efficient way of screening for various posttranslational modifications. Basically any instrumentation for MALDI mass spectrometry can be used, provided that post-data acquisition recalibration is applied.

References

  1. EMBO J. 1999 Dec 1;18(23):6744-51 [PMID: 10581247]
  2. J Biol Chem. 1994 May 27;269(21):15394-8 [PMID: 7910824]
  3. J Biol Chem. 2000 Mar 24;275(12):8703-10 [PMID: 10722712]
  4. Prog Neurobiol. 2000 Aug;61(5):439-63 [PMID: 10748319]
  5. Nature. 2000 Jun 15;405(6788):837-46 [PMID: 10866210]
  6. Anal Biochem. 2000 Dec 1;287(1):110-7 [PMID: 11078590]
  7. Rapid Commun Mass Spectrom. 2000;14(21):2070-3 [PMID: 11085420]
  8. Rapid Commun Mass Spectrom. 2000;14(23):2147-53 [PMID: 11114023]
  9. Fresenius J Anal Chem. 2000 Mar-Apr;366(6-7):677-90 [PMID: 11225779]
  10. Curr Opin Chem Biol. 2001 Oct;5(5):591-602 [PMID: 11578935]
  11. Proteomics. 2001 Feb;1(2):200-6 [PMID: 11680867]
  12. Acta Neuropathol. 1994;87(5):511-9 [PMID: 8059604]
  13. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14440-5 [PMID: 8962070]
  14. Int J Biol Macromol. 1998 May-Jun;22(3-4):151-62 [PMID: 9650070]
  15. J Mass Spectrom. 1999 Feb;34(2):105-16 [PMID: 10093212]
  16. J Biol Chem. 1999 Oct 22;274(43):30715-21 [PMID: 10521460]
  17. Nat Struct Biol. 2001 Dec;8(12):1025-30 [PMID: 11702068]
  18. Adv Protein Chem. 2001;59:105-56 [PMID: 11868270]
  19. Trends Biotechnol. 2002 Jun;20(6):261-8 [PMID: 12007495]
  20. Trends Biochem Sci. 2002 Oct;27(10):534-9 [PMID: 12368090]
  21. Biochem J. 2002 Dec 1;368(Pt 2):377-96 [PMID: 12366374]
  22. Nat Rev Mol Cell Biol. 2003 Feb;4(2):140-56 [PMID: 12563291]
  23. Nat Biotechnol. 2003 Mar;21(3):255-61 [PMID: 12610572]
  24. J Am Soc Mass Spectrom. 2003 Sep;14(9):992-1002 [PMID: 12954167]
  25. Org Biomol Chem. 2004 Jan 7;2(1):1-7 [PMID: 14737652]
  26. Curr Opin Chem Biol. 2004 Feb;8(1):33-41 [PMID: 15036154]
  27. J Biol Chem. 2004 Apr 23;279(17):17607-16 [PMID: 14747475]
  28. Mol Cell Proteomics. 2004 May;3(5):456-65 [PMID: 14762214]
  29. Proteomics. 2004 Jun;4(6):1525-6 [PMID: 15174121]
  30. FASEB J. 2004 Jul;18(10):1135-7 [PMID: 15132984]
  31. J Biol Chem. 2004 Jul 30;279(31):32674-83 [PMID: 15152007]
  32. FEBS Lett. 2004 Oct 8;576(1-2):57-62 [PMID: 15474010]
  33. Dis Markers. 2004;20(3):149-53 [PMID: 15502247]
  34. FEBS Lett. 1990 Mar 26;262(2):269-74 [PMID: 1692291]
  35. Eur J Biochem. 1992 Apr 15;205(2):671-4 [PMID: 1349282]
  36. J Biol Chem. 1993 Jan 15;268(2):1046-52 [PMID: 8093449]
  37. Neurology. 2000 Mar 14;54(5):1033-41 [PMID: 10720271]

MeSH Term

Amino Acid Sequence
Calibration
Catalysis
Molecular Sequence Data
Peptides
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Transglutaminases

Chemicals

Peptides
Transglutaminases

Word Cloud

Created with Highcharts 10.0.0massmodificationspeptiderecalibrationisopeptideposttranslationalfingerprintingpost-dataacquisitionaccuracymultipointrecognizedpeaksusedpeptidesspecifictransglutaminase-catalyzedbondformationsHspstwohexapeptideGQDPVRGNDPVKcross-linkingprobedetectedresiduesGlncanDetectionexpectedonemajorfutureexperimentalchallengesproteomicsdescribehereinspectrometricprocedurescreenproteinbasedimprovementexportingvaluesanalyticalsoftwareSubsequentlycalibratedpeakdatasetsearchingmodifiediepossessingdeviationsorderidentifylocationLys-Gln-residuesavailablemammaliansmallheatshockproteinsscreenedlabelingprobespresencetransglutaminasePeptidemodificationduehexa-peptideC-terminalLysNoveltransglutaminase-susceptiblesitesidentifiedQ31/Q27Hsp20HspB2respectivelyDeamidationalsowellderivedintramolecularGln-LysconcludeefficientwayscreeningvariousBasicallyinstrumentationMALDIspectrometryprovidedappliedScreeningfingerprintingusinghigh

Similar Articles

Cited By