A voltage-driven switch for ion-independent signaling by ether-à-go-go K+ channels.

Andrew P Hegle, Daniel D Marble, Gisela F Wilson
Author Information
  1. Andrew P Hegle: Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.

Abstract

Voltage-gated channels maintain cellular resting potentials and generate neuronal action potentials by regulating ion flux. Here, we show that Ether-à-go-go (EAG) K+ channels also regulate intracellular signaling pathways by a mechanism that is independent of ion flux and depends on the position of the voltage sensor. Regulation of intracellular signaling was initially inferred from changes in proliferation. Specifically, transfection of NIH 3T3 fibroblasts or C2C12 myoblasts with either wild-type or nonconducting (F456A) eag resulted in dramatic increases in cell density and BrdUrd incorporation over vector- and Shaker-transfected controls. The effect of EAG was independent of serum and unaffected by changes in extracellular calcium. Inhibitors of p38 mitogen-activated protein (MAP) kinases, but not p44/42 MAP kinases (extracellular signal-regulated kinases), blocked the proliferation induced by nonconducting EAG in serum-free media, and EAG increased p38 MAP kinase activity. Importantly, mutations that increased the proportion of channels in the open state inhibited EAG-induced proliferation, and this effect could not be explained by changes in the surface expression of EAG. These results indicate that channel conformation is a switch for the signaling activity of EAG and suggest an alternative mechanism for linking channel activity to the activity of intracellular messengers, a role that previously has been ascribed only to channels that regulate calcium influx.

References

  1. Curr Opin Neurobiol. 2004 Jun;14(3):311-7 [PMID: 15194111]
  2. Science. 2001 Oct 12;294(5541):333-9 [PMID: 11598293]
  3. Nat Rev Neurosci. 2004 Mar;5(3):173-83 [PMID: 14976517]
  4. J Physiol. 1993 Oct;470:501-20 [PMID: 7508507]
  5. Nature. 1984 Feb 2-8;307(5950):465-8 [PMID: 6320007]
  6. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6763-7 [PMID: 7542775]
  7. J Biol Chem. 2004 Mar 12;279(11):10206-14 [PMID: 14699099]
  8. Science. 1988 Feb 26;239(4843):1024-6 [PMID: 2449730]
  9. Neuroreport. 2005 Feb 28;16(3):229-33 [PMID: 15706225]
  10. Neurosci Lett. 2004 Sep 30;368(3):249-53 [PMID: 15364405]
  11. Science. 1998 Apr 3;280(5360):69-77 [PMID: 9525859]
  12. EMBO J. 1999 Oct 15;18(20):5540-7 [PMID: 10523298]
  13. Neuron. 2003 Jan 9;37(1):109-20 [PMID: 12526777]
  14. Annu Rev Immunol. 1995;13:623-53 [PMID: 7612237]
  15. Endocr Rev. 2001 Apr;22(2):153-83 [PMID: 11294822]
  16. J Neurosci. 1999 May 15;19(10):RC4 [PMID: 10234050]
  17. J Neurosci. 1998 Mar 15;18(6):2254-67 [PMID: 9482810]
  18. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7774-9 [PMID: 12032359]
  19. Development. 1998 Jan;125(1):1-9 [PMID: 9389658]
  20. J Neurosci. 2005 May 18;25(20):4898-907 [PMID: 15901771]
  21. Biophys J. 1994 Apr;66(4):1061-7 [PMID: 8038378]
  22. Annu Rev Cell Dev Biol. 2000;16:521-55 [PMID: 11031246]
  23. EMBO J. 1994 Oct 3;13(19):4451-8 [PMID: 7925287]
  24. Pflugers Arch. 2000 Jul;440(3):452-61 [PMID: 10954332]
  25. Cancer Res. 2004 Oct 1;64(19):6996-7001 [PMID: 15466192]
  26. J Neurosci. 2001 Jul 1;21(13):4609-24 [PMID: 11425889]
  27. Science. 2001 Feb 9;291(5506):1043-7 [PMID: 11161216]
  28. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10044-8 [PMID: 7937834]
  29. J Neurochem. 2001 May;77(4):961-71 [PMID: 11359861]
  30. Nature. 2005 Jun 30;435(7046):1239-43 [PMID: 15902207]
  31. J Biol Chem. 2002 Jul 5;277(27):24022-9 [PMID: 11980904]
  32. Neuron. 1996 Jan;16(1):89-101 [PMID: 8562094]
  33. Trends Neurosci. 2003 Feb;26(2):81-9 [PMID: 12536131]
  34. Neuron. 1994 Jun;12(6):1207-21 [PMID: 8011335]
  35. Neuron. 2002 Aug 29;35(5):935-49 [PMID: 12372287]
  36. Nature. 1999 Oct 21;401(6755):800-4 [PMID: 10548106]
  37. J Biol Chem. 1998 Mar 13;273(11):6389-94 [PMID: 9497369]
  38. J Gen Physiol. 2000 Mar;115(3):319-38 [PMID: 10694260]
  39. J Biol Chem. 2000 Apr 14;275(15):11383-8 [PMID: 10753953]

Grants

  1. R01 MH062648/NIMH NIH HHS
  2. MH62648/NIMH NIH HHS

MeSH Term

Animals
Biological Transport
Cell Proliferation
Cells, Cultured
Drosophila
Drosophila Proteins
Ether-A-Go-Go Potassium Channels
Fibroblasts
Ions
Mice
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
Myoblasts
NIH 3T3 Cells
Protein Kinase Inhibitors
Signal Transduction
Transfection
p38 Mitogen-Activated Protein Kinases

Chemicals

Drosophila Proteins
Ether-A-Go-Go Potassium Channels
Ions
Protein Kinase Inhibitors
eag protein, Drosophila
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
p38 Mitogen-Activated Protein Kinases

Word Cloud

Created with Highcharts 10.0.0EAGchannelssignalingactivityintracellularchangesproliferationMAPkinasespotentialsionfluxK+regulatemechanismindependentnonconductingeffectextracellularcalciump38increasedchannelswitchVoltage-gatedmaintaincellularrestinggenerateneuronalactionregulatingshowEther-à-go-goalsopathwaysdependspositionvoltagesensorRegulationinitiallyinferredSpecificallytransfectionNIH3T3fibroblastsC2C12myoblastseitherwild-typeF456AeagresulteddramaticincreasescelldensityBrdUrdincorporationvector-Shaker-transfectedcontrolsserumunaffectedInhibitorsmitogen-activatedproteinp44/42signal-regulatedblockedinducedserum-freemediakinaseImportantlymutationsproportionopenstateinhibitedEAG-inducedexplainedsurfaceexpressionresultsindicateconformationsuggestalternativelinkingmessengersrolepreviouslyascribedinfluxvoltage-drivenion-independentether-à-go-go

Similar Articles

Cited By