Genetic variation in the Vibrio vulnificus group 1 capsular polysaccharide operon.

Maria Chatzidaki-Livanis, Melissa K Jones, Anita C Wright
Author Information
  1. Maria Chatzidaki-Livanis: University of Florida, Department of Food Science and Human Nutrition, P.O. Box 110370, Gainesville, FL 32611, USA.

Abstract

Vibrio vulnificus produces human disease associated with raw-oyster consumption or wound infections, but fatalities are limited to persons with chronic underlying illness. Capsular polysaccharide (CPS) is required for virulence, and CPS expression correlates with opaque (Op) colonies that show "phase variation" to avirulent translucent (Tr) phenotypes with reduced CPS. The results discussed here confirmed homology of a V. vulnificus CPS locus to the group 1 CPS operon in Escherichia coli. However, two distinct V. vulnificus genotypes or alleles were associated with the operon, and they diverged at sequences encoding hypothetical proteins and also at unique, intergenic repetitive DNA elements. Phase variation was examined under conditions that promoted high-frequency transition of Op to Tr forms. Recovery of Tr isolates in these experiments showed multiple genotypes, which were designated TR1, TR2, and TR3: CPS operons of TR1 isolates were identical to the Op parent, and cells remained phase variable but expressed reduced CPS. TR2 and TR3 showed deletion mutations in one (wzb) or multiple genes, respectively, and deletion mutants were acapsular and locked in the Tr phase. Complementation in trans restored the Op phenotype in strains with the wzb deletion mutation. Allelic variation in repetitive elements determined the locations, rates, and extents of deletion mutations. Thus, different mechanisms are responsible for reversible phase variation in CPS expression versus genetic deletions in the CPS operon of V. vulnificus. Repetitive-element-mediated deletion mutations were highly conserved within the species and are likely to promote survival in estuarine environments.

Associated Data

GENBANK | DQ360502

References

  1. Infect Immun. 1999 May;67(5):2250-7 [PMID: 10225881]
  2. EMBO J. 2000 Jan 4;19(1):57-66 [PMID: 10619844]
  3. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10446-51 [PMID: 12915735]
  4. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3004-9 [PMID: 15703294]
  5. Infect Immun. 2001 Nov;69(11):6893-901 [PMID: 11598064]
  6. J Biochem. 1989 Jan;105(1):29-34 [PMID: 2500428]
  7. Science. 2001 May 11;292(5519):1096-9 [PMID: 11352062]
  8. Trends Microbiol. 2001 Sep;9(9):452-8 [PMID: 11553458]
  9. Annu Rev Microbiol. 1990;44:451-77 [PMID: 2252390]
  10. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14357-62 [PMID: 14614140]
  11. Appl Environ Microbiol. 1995 Jan;61(1):52-7 [PMID: 16534922]
  12. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11388-92 [PMID: 7972070]
  13. Mol Microbiol. 2003 Feb;47(4):1045-60 [PMID: 12581358]
  14. Anal Biochem. 1997 Aug 1;250(2):186-95 [PMID: 9245438]
  15. J Bacteriol. 2003 Sep;185(18):5431-41 [PMID: 12949095]
  16. Infect Immun. 2003 Mar;71(3):1091-7 [PMID: 12595419]
  17. J Clin Microbiol. 2003 Jan;41(1):442-6 [PMID: 12517889]
  18. Cell. 1986 Oct 10;47(1):61-71 [PMID: 3093085]
  19. Gene. 1999 Sep 17;237(2):321-32 [PMID: 10521656]
  20. J Bacteriol. 2001 Jan;183(2):758-62 [PMID: 11133972]
  21. J Bacteriol. 1999 Apr;181(7):2307-13 [PMID: 10094716]
  22. Microbiol Immunol. 2005;49(4):381-9 [PMID: 15840964]
  23. Mol Microbiol. 1990 Aug;4(8):1341-52 [PMID: 1980712]
  24. Infect Immun. 1996 Jul;64(7):2834-8 [PMID: 8698519]
  25. Microbiol Mol Biol Rev. 2004 Sep;68(3):403-31, table of contents [PMID: 15353563]
  26. Infect Immun. 1997 Sep;65(9):3713-8 [PMID: 9284142]
  27. Infect Immun. 2000 Oct;68(10):5785-93 [PMID: 10992486]
  28. Rev Infect Dis. 1988 Jul-Aug;10 Suppl 2:S341-4 [PMID: 2903540]
  29. Appl Environ Microbiol. 2003 Dec;69(12):7137-44 [PMID: 14660359]
  30. Trends Microbiol. 1995 Aug;3(8):304-9 [PMID: 8528614]
  31. Mol Microbiol. 1999 Mar;31(5):1321-32 [PMID: 10200954]
  32. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4402-5 [PMID: 2837765]
  33. J Bacteriol. 1998 Jun;180(12):3166-73 [PMID: 9620967]
  34. Genome Res. 2003 Dec;13(12):2577-87 [PMID: 14656965]
  35. J Bacteriol. 2001 Feb;183(4):1369-75 [PMID: 11157950]
  36. Microbios. 1991;67(272-273):141-9 [PMID: 1779875]
  37. J Bacteriol. 2004 Feb;186(3):889-93 [PMID: 14729720]
  38. Mol Microbiol. 1994 Jul;13(2):207-17 [PMID: 7984102]
  39. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4539-43 [PMID: 1584789]
  40. J Mol Biol. 2000 Dec 1;304(3):311-21 [PMID: 11090276]
  41. Infect Immun. 1985 Feb;47(2):446-51 [PMID: 2578434]
  42. Nucleic Acids Res. 2001 Sep 1;29(17):3583-94 [PMID: 11522828]
  43. Microbes Infect. 2000 Feb;2(2):177-88 [PMID: 10742690]
  44. Mol Microbiol. 1999 Mar;31(5):1307-19 [PMID: 10200953]
  45. Carbohydr Res. 2003 Nov 14;338(23):2491-502 [PMID: 14670711]
  46. J Microbiol. 2005 Feb;43 Spec No:118-31 [PMID: 15765065]
  47. Cold Spring Harb Symp Quant Biol. 1966;31:77-84 [PMID: 5237214]
  48. J Bacteriol. 1991 Sep;173(17):5308-14 [PMID: 1679430]
  49. J Bacteriol. 1992 Apr;174(8):2620-30 [PMID: 1556081]
  50. Clin Microbiol Rev. 2004 Jul;17(3):581-611, table of contents [PMID: 15258095]
  51. Infect Immun. 1987 Jan;55(1):269-72 [PMID: 2432016]
  52. Microbiol Mol Biol Rev. 1998 Jun;62(2):275-93 [PMID: 9618442]
  53. J Biol Chem. 2001 Jan 26;276(4):2361-71 [PMID: 11053445]
  54. Appl Environ Microbiol. 2003 Jul;69(7):4006-11 [PMID: 12839775]
  55. Lancet. 2003 Mar 1;361(9359):743-9 [PMID: 12620739]
  56. Appl Environ Microbiol. 2002 Nov;68(11):5773-8 [PMID: 12406780]
  57. Infect Immun. 1990 Jun;58(6):1769-73 [PMID: 2160432]
  58. Mol Microbiol. 1999 Sep;33(5):919-32 [PMID: 10476027]
  59. N Engl J Med. 1979 Jan 4;300(1):1-5 [PMID: 758155]
  60. Mol Microbiol. 2004 Jul;53(2):497-515 [PMID: 15228530]
  61. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3890-4 [PMID: 2872674]
  62. Mol Microbiol. 1994 Jun;12(5):855-6 [PMID: 8052136]
  63. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3943-8 [PMID: 9520472]
  64. Plasmid. 1985 Mar;13(2):149-53 [PMID: 2987994]
  65. Can J Microbiol. 2004 Nov;50(11):911-22 [PMID: 15644908]

MeSH Term

Alleles
Amino Acid Sequence
Animals
Bacterial Capsules
DNA, Bacterial
Genetic Variation
Humans
Molecular Sequence Data
Operon
Polysaccharides, Bacterial
Sequence Alignment
Vibrio Infections
Vibrio vulnificus

Chemicals

DNA, Bacterial
Polysaccharides, Bacterial

Word Cloud

Created with Highcharts 10.0.0CPSvulnificusdeletionOpTroperonvariationVphasemutationsVibrioassociatedpolysaccharideexpressionreducedgroup1genotypesrepetitiveelementsisolatesshowedmultipleTR1TR2wzbproduceshumandiseaseraw-oysterconsumptionwoundinfectionsfatalitieslimitedpersonschronicunderlyingillnessCapsularrequiredvirulencecorrelatesopaquecoloniesshow"phasevariation"avirulenttranslucentphenotypesresultsdiscussedconfirmedhomologylocusEscherichiacoliHowevertwodistinctallelesdivergedsequencesencodinghypotheticalproteinsalsouniqueintergenicDNAPhaseexaminedconditionspromotedhigh-frequencytransitionformsRecoveryexperimentsdesignatedTR3:operonsidenticalparentcellsremainedvariableexpressedTR3onegenesrespectivelymutantsacapsularlockedComplementationtransrestoredphenotypestrainsmutationAllelicdeterminedlocationsratesextentsThusdifferentmechanismsresponsiblereversibleversusgeneticdeletionsRepetitive-element-mediatedhighlyconservedwithinspecieslikelypromotesurvivalestuarineenvironmentsGeneticcapsular

Similar Articles

Cited By