Wiring stability of the adult Drosophila olfactory circuit after lesion.

Daniela Berdnik, Takahiro Chihara, Africa Couto, Liqun Luo
Author Information
  1. Daniela Berdnik: Howard Hughes Medical Institute, Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.

Abstract

Neuronal wiring plasticity in response to experience or injury has been reported in many parts of the adult nervous system. For instance, visual or somatosensory cortical maps can reorganize significantly in response to peripheral lesions, yet a certain degree of stability is essential for neuronal circuits to perform their dedicated functions. Previous studies on lesion-induced neuronal reorganization have primarily focused on systems that use continuous neural maps. Here, we assess wiring plasticity in a discrete neural map represented by the adult Drosophila olfactory circuit. Using conditional expression of toxins, we genetically ablated specific classes of neurons and examined the consequences on their synaptic partners or neighboring classes in the adult antennal lobe. We find no alteration of connection specificity between olfactory receptor neurons (ORNs) and their postsynaptic targets, the projection neurons (PNs). Ablating an ORN class maintains PN dendrites within their glomerular borders, and ORN axons normally innervating an adjacent target do not expand. Likewise, ablating PN classes does not alter their partner ORN axon connectivity. Interestingly, an increase in the contralateral ORN axon terminal density occurs in response to the removal of competing ipsilateral ORNs. Therefore, plasticity in this circuit can occur but is confined within a glomerulus, thereby retaining the wiring specificity of ORNs and PNs. We conclude that, although adult olfactory neurons can undergo plastic changes in response to the loss of competition, the olfactory circuit overall is extremely stable in preserving segregated information channels in this discrete map.

References

  1. Ann N Y Acad Sci. 1998 Nov 30;855:508-10 [PMID: 10049229]
  2. Genetics. 1999 Mar;151(3):1093-101 [PMID: 10049925]
  3. Neuron. 1999 Feb;22(2):327-38 [PMID: 10069338]
  4. Cell. 1999 Mar 5;96(5):725-36 [PMID: 10089887]
  5. J Comp Neurol. 1999 Mar 22;405(4):543-52 [PMID: 10098944]
  6. Genomics. 1999 Aug 15;60(1):31-9 [PMID: 10458908]
  7. Development. 2000 Feb;127(3):573-83 [PMID: 10631178]
  8. Nat Neurosci. 2000 May;3(5):476-81 [PMID: 10769388]
  9. Nat Neurosci. 2000 Aug;3(8):780-5 [PMID: 10903570]
  10. Cell. 2000 Jul 21;102(2):147-59 [PMID: 10943836]
  11. Curr Opin Neurobiol. 2000 Aug;10(4):498-503 [PMID: 10981620]
  12. Cell. 2000 Nov 10;103(4):609-20 [PMID: 11106731]
  13. Cell. 2001 Mar 9;104(5):651-60 [PMID: 11257220]
  14. J Neurosci. 2001 Aug 15;21(16):6274-82 [PMID: 11487650]
  15. Nature. 2001 Nov 8;414(6860):204-8 [PMID: 11719930]
  16. Int J Dev Biol. 2002 Jan;46(1):173-6 [PMID: 11902680]
  17. Cell. 2002 Apr 19;109(2):229-41 [PMID: 12007409]
  18. Nature. 2002 Jul 18;418(6895):336-40 [PMID: 12110845]
  19. Neuron. 2002 Oct 24;36(3):463-74 [PMID: 12408848]
  20. Nat Neurosci. 2003 Nov;6(11):1201-7 [PMID: 14528309]
  21. Development. 2004 Jan;131(1):117-30 [PMID: 14645123]
  22. J Comp Neurol. 2004 Mar 1;470(2):134-50 [PMID: 14750157]
  23. Sci STKE. 2004 Feb 12;2004(220):pl6 [PMID: 14970377]
  24. Curr Biol. 2004 Mar 23;14(6):449-57 [PMID: 15043809]
  25. Neuron. 2004 Apr 8;42(1):63-75 [PMID: 15066265]
  26. Neuron. 2004 May 27;42(4):553-66 [PMID: 15157418]
  27. Nat Neurosci. 2004 Aug;7(8):819-25 [PMID: 15247920]
  28. Nature. 1992 Mar 12;356(6365):150-2 [PMID: 1545866]
  29. Nat Neurosci. 2005 Feb;8(2):140-2 [PMID: 15657598]
  30. Neuron. 2005 Mar 3;45(5):661-6 [PMID: 15748842]
  31. Nature. 2005 May 19;435(7040):300-7 [PMID: 15902248]
  32. Cell. 2005 Jun 3;121(5):795-807 [PMID: 15935765]
  33. Nature. 2005 Jul 21;436(7049):395-400 [PMID: 15959468]
  34. Curr Biol. 2005 Sep 6;15(17):1535-47 [PMID: 16139208]
  35. Curr Biol. 2005 Sep 6;15(17):1548-53 [PMID: 16139209]
  36. Science. 1991 Jun 28;252(5014):1857-60 [PMID: 1843843]
  37. J Neurosci. 1991 Apr;11(4):979-84 [PMID: 2010818]
  38. Annu Rev Neurosci. 1991;14:137-67 [PMID: 2031570]
  39. Cell Tissue Res. 1990 Oct;262(1):9-34 [PMID: 2124174]
  40. Dev Genes Evol. 1996 Jun;206(1):14-24 [PMID: 24173393]
  41. J Comp Neurol. 1969 Dec;137(4):433-57 [PMID: 5361244]
  42. Nature. 1982 Oct 14;299(5884):583-91 [PMID: 6811951]
  43. Sci Am. 1995 Oct;273(4):154-9 [PMID: 7481719]
  44. Dev Biol. 1995 Apr;168(2):689-93 [PMID: 7729601]
  45. J Neurosci. 1995 Mar;15(3 Pt 1):1951-60 [PMID: 7891144]
  46. Science. 1994 Jul 22;265(5171):546-8 [PMID: 8036500]
  47. Development. 1994 Jun;120(6):1537-47 [PMID: 8050361]
  48. Cell Tissue Res. 1994 Jan;275(1):3-26 [PMID: 8118845]
  49. Nature. 1994 Apr 21;368(6473):737-40 [PMID: 8152484]
  50. J Neurosci. 1996 Sep 15;16(18):5715-26 [PMID: 8795627]
  51. J Neurobiol. 1997 May;32(5):443-56 [PMID: 9110257]
  52. Annu Rev Neurosci. 1998;21:149-86 [PMID: 9530495]
  53. Science. 1998 Nov 6;282(5391):1117-21 [PMID: 9804549]

Grants

  1. R01-DC005982/NIDCD NIH HHS

MeSH Term

Animals
Drosophila melanogaster
Nerve Net
Neuronal Plasticity
Olfactory Bulb
Olfactory Pathways
Olfactory Receptor Neurons
Sense Organs
Smell

Word Cloud

Created with Highcharts 10.0.0adultolfactoryresponsecircuitneuronsORNwiringplasticitycanclassesORNsmapsstabilityneuronalneuraldiscretemapDrosophilaspecificityPNsPNwithinaxonNeuronalexperienceinjuryreportedmanypartsnervoussysteminstancevisualsomatosensorycorticalreorganizesignificantlyperipherallesionsyetcertaindegreeessentialcircuitsperformdedicatedfunctionsPreviousstudieslesion-inducedreorganizationprimarilyfocusedsystemsusecontinuousassessrepresentedUsingconditionalexpressiontoxinsgeneticallyablatedspecificexaminedconsequencessynapticpartnersneighboringantennallobefindalterationconnectionreceptorpostsynaptictargetsprojectionAblatingclassmaintainsdendritesglomerularbordersaxonsnormallyinnervatingadjacenttargetexpandLikewiseablatingalterpartnerconnectivityInterestinglyincreasecontralateralterminaldensityoccursremovalcompetingipsilateralThereforeoccurconfinedglomerulustherebyretainingconcludealthoughundergoplasticchangeslosscompetitionoverallextremelystablepreservingsegregatedinformationchannelsWiringlesion

Similar Articles

Cited By