Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex.

Mieko Morishima, Yasuo Kawaguchi
Author Information
  1. Mieko Morishima: Division of Cerebral Circuitry, National Institute for Physiological Sciences, Department of Physiological Sciences, The Graduate University for Advanced Studies, Aichi, Okazaki 444-8787, Japan.

Abstract

Corticostriatal pyramidal cells are heterogeneous in the frontal cortex. Here, we show that subpopulations of corticostriatal neurons in the rat frontal cortex are selectively connected with each other based on their subcortical targets. Using paired recordings of retrogradely labeled cells, we investigated the synaptic connectivity between two projection cell types: those projecting to the pons [corticopontine (CPn) cell], often with collaterals to the striatum, and those projecting to both sides of the striatum but not to the pons [crossed corticostriatal (CCS) cell]. The two types were morphologically differentiated in regard to their apical tufts. The dendritic morphologies of CCS cells were correlated with their somatic depth within the cortex. CCS cells had reciprocal synaptic connections with each other and also provided synaptic input to CPn cells. However, connections from CPn to CCS cells were rarely found, even in pairs showing CCS to CPn connectivity. Additionally, CCS cells preferentially innervated the basal dendrites of other CCS cells but made contacts onto both the basal and apical dendrites of CPn cells. The amplitude of synaptic responses was to some extent correlated with the contact site number. Ratios of the EPSC amplitude to the contact number tended to be larger in the CCS to CCS connection. Therefore, our data demonstrate that these two types of corticostriatal cells distinct in their dendritic morphologies show directional and domain-dependent preferences in their synaptic connectivity.

References

  1. Trends Neurosci. 1989 Oct;12(10):366-75 [PMID: 2479133]
  2. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11888-93 [PMID: 16087877]
  3. Eur J Neurosci. 1996 Feb;8(2):329-43 [PMID: 8714704]
  4. Cereb Cortex. 2003 Jan;13(1):5-14 [PMID: 12466210]
  5. PLoS Biol. 2005 Mar;3(3):e68 [PMID: 15737062]
  6. Nature. 1984 Oct 4-10;311(5985):461-4 [PMID: 6207434]
  7. J Neurocytol. 2002 Mar-Jun;31(3-5):239-46 [PMID: 12815243]
  8. Brain Res. 1989 Jul 24;493(1):198-203 [PMID: 2776007]
  9. J Physiol. 1999 Nov 15;521 Pt 1:169-90 [PMID: 10562343]
  10. Cereb Cortex. 1998 Oct-Nov;8(7):602-13 [PMID: 9823481]
  11. J Neurophysiol. 1989 Nov;62(5):1052-68 [PMID: 2585039]
  12. J Comp Neurol. 2004 Aug 16;476(2):174-85 [PMID: 15248197]
  13. J Comp Neurol. 2005 Nov 21;492(3):349-69 [PMID: 16217789]
  14. Cereb Cortex. 1997 Sep;7(6):523-33 [PMID: 9276177]
  15. Trends Neurosci. 2001 Aug;24(8):455-63 [PMID: 11476885]
  16. Trends Neurosci. 1990 Jul;13(7):281-5 [PMID: 1695404]
  17. Neurosci Lett. 1996 Jan 19;203(2):81-4 [PMID: 8834098]
  18. Nature. 1998 Jul 30;394(6692):475-8 [PMID: 9697769]
  19. J Comp Neurol. 1988 Jun 1;272(1):149-60 [PMID: 3385021]
  20. J Physiol. 1997 Apr 15;500 ( Pt 2):409-40 [PMID: 9147328]
  21. Cereb Cortex. 2005 Oct;15(10):1485-96 [PMID: 15647524]
  22. J Comp Neurol. 1987 Sep 22;263(4):567-80 [PMID: 2822779]
  23. Brain Res. 1981 Sep 7;220(1):67-80 [PMID: 6168334]
  24. J Neurosci. 1993 Dec;13(12):5312-23 [PMID: 8254377]
  25. J Comp Neurol. 1994 Jan 22;339(4):459-74 [PMID: 8144741]
  26. J Neurosci. 1990 Oct;10(10):3421-38 [PMID: 1698947]
  27. Annu Rev Neurosci. 1992;15:285-320 [PMID: 1575444]
  28. J Neurosci. 1993 May;13(5):2199-216 [PMID: 8386756]
  29. J Neurosci. 1993 Aug;13(8):3266-83 [PMID: 8340807]
  30. J Comp Neurol. 1977 May 1;173(1):53-80 [PMID: 403206]
  31. Exp Brain Res. 1992;88(1):33-40 [PMID: 1347272]
  32. Cereb Cortex. 1997 Sep;7(6):510-22 [PMID: 9276176]
  33. Eur J Neurosci. 2004 Jul;20(2):495-502 [PMID: 15233758]
  34. Trends Neurosci. 1990 Jul;13(7):266-71 [PMID: 1695401]
  35. Neuron. 2002 Apr 11;34(2):275-88 [PMID: 11970869]
  36. J Comp Neurol. 2005 Nov 14;492(2):145-77 [PMID: 16196030]
  37. Science. 1994 Sep 23;265(5180):1826-31 [PMID: 8091209]
  38. Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):880-5 [PMID: 15630093]
  39. J Physiol. 2003 Aug 15;551(Pt 1):139-53 [PMID: 12813147]
  40. J Neurosci. 2004 Mar 24;24(12):2853-65 [PMID: 15044524]
  41. Trends Neurosci. 1994 Mar;17(3):119-26 [PMID: 7515528]
  42. Curr Opin Neurobiol. 2002 Apr;12(2):217-22 [PMID: 12015240]
  43. Cereb Cortex. 1996 Nov-Dec;6(6):759-70 [PMID: 8922332]
  44. J Neurophysiol. 2005 Nov;94(5):3357-67 [PMID: 16000529]
  45. J Neurosci. 2005 Mar 30;25(13):3423-31 [PMID: 15800197]
  46. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):295-300 [PMID: 11134520]
  47. J Comp Neurol. 1990 Nov 22;301(4):655-74 [PMID: 2177064]
  48. Trends Neurosci. 2001 Oct;24(10):595-601 [PMID: 11576674]
  49. Prog Neurobiol. 1998 Mar;54(4):417-58 [PMID: 9522395]
  50. J Comp Neurol. 1981 Sep 1;201(1):1-13 [PMID: 7276247]
  51. Nat Neurosci. 2000 Oct;3(10):1027-34 [PMID: 11017176]
  52. Nat Neurosci. 2000 Jun;3(6):617-21 [PMID: 10816319]
  53. Brain Res. 1995 Nov 6;698(1-2):280-4 [PMID: 8581498]
  54. J Neurosci. 1996 Apr 1;16(7):2397-410 [PMID: 8601819]
  55. J Neurophysiol. 1997 Apr;77(4):1697-715 [PMID: 9114230]
  56. Science. 1989 Oct 20;246(4928):385-8 [PMID: 2799392]
  57. J Neurophysiol. 1994 Jan;71(1):17-32 [PMID: 8158226]
  58. J Neurosci. 2004 Sep 22;24(38):8289-99 [PMID: 15385612]
  59. J Neurophysiol. 2000 May;83(5):2626-38 [PMID: 10805663]
  60. J Comp Neurol. 2003 Mar 17;457(4):420-40 [PMID: 12561080]
  61. J Neurosci. 1990 May;10(5):1415-28 [PMID: 2332788]
  62. Brain Res. 1988 Sep 13;460(1):161-7 [PMID: 2464402]
  63. Neuroscience. 1998 Jun;84(3):669-83 [PMID: 9579775]
  64. J Physiol. 2000 May 15;525 Pt 1:31-9 [PMID: 10811722]
  65. Brain Res. 1996 Feb 19;709(2):311-5 [PMID: 8833768]

MeSH Term

Animals
Cerebral Cortex
Corpus Striatum
Excitatory Postsynaptic Potentials
Frontal Lobe
Nerve Net
Pyramidal Cells
Rats
Rats, Wistar
Synapses

Word Cloud

Created with Highcharts 10.0.0cellsCCSsynapticCPncortexcorticostriatalfrontalconnectivitytwopyramidalshowprojectingponscell]striatumtypesapicaldendriticmorphologiescorrelatedconnectionsbasaldendritesamplitudecontactnumberconnectionCorticostriatalheterogeneoussubpopulationsneuronsratselectivelyconnectedbasedsubcorticaltargetsUsingpairedrecordingsretrogradelylabeledinvestigatedprojectioncelltypes:[corticopontineoftencollateralssides[crossedmorphologicallydifferentiatedregardtuftssomaticdepthwithinreciprocalalsoprovidedinputHoweverrarelyfoundevenpairsshowingAdditionallypreferentiallyinnervatedmadecontactsontoresponsesextentsiteRatiosEPSCtendedlargerThereforedatademonstratedistinctdirectionaldomain-dependentpreferencesRecurrentpatterns

Similar Articles

Cited By