Upstream regulatory region of zebrafish lunatic fringe: isolation and promoter analysis.

Jing Liu, Yong-Hua Sun, Na Wang, Ya-Ping Wang, Zuo-Yan Zhu
Author Information
  1. Jing Liu: State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.

Abstract

Lunatic fringe (Lfng), one modulator of Notch signaling, plays an essential part in demarcation of tissues boundaries during animal early development, especially somitogenesis. To characterize the promoter of zebrafish lfng and generate somite-specific transgenic zebrafish, we isolated the upstream regulatory region of zebrafish lfng by blast search at the Ensembl genome database ( http://www.ensembl.org ) and analyzed the promoter activity using green fluorescent protein (GFP) as a reporter. Promoter activity assay in zebrafish shows that the 0.2-kb fragment containing GC-box, CAAT-box, and TATA-box can direct tissue-specific GFP expression, while the 0.4-kb and 1.2-kb fragments with further upstream sequence included drive GFP expression more efficiently. We produced lfngEGFP-transgenic founders showing somite-specific expression of GFP and consequently generated a hemizygous lfngEGFP-transgenic line. The eggs from lfngEGFP-transgenic female zebrafish show strong GFP expression, which is consistent to the reverse-transcription polymerase chain reaction PCR (RT-PCR) detection of lfng transcripts in the fertilized eggs. This reveals that zebrafish lfng is a maternal factor existing in matured eggs, suggesting that fish somitogenesis may be influenced by maternal factors.

References

  1. Dev Dyn. 2000 Jul;218(3):426-37 [PMID: 10878608]
  2. J Comp Neurol. 2000 Aug 28;424(3):509-20 [PMID: 10906716]
  3. Nature. 2003 Jan 16;421(6920):275-8 [PMID: 12529645]
  4. Development. 1996 Dec;123:153-64 [PMID: 9007237]
  5. Nature. 1998 Jul 23;394(6691):374-7 [PMID: 9690472]
  6. Mar Biotechnol (NY). 2000 Mar;2(2):107-125 [PMID: 10811950]
  7. Mech Dev. 2000 Mar 1;91(1-2):351-4 [PMID: 10704863]
  8. Dev Biol. 1999 Mar 1;207(1):49-61 [PMID: 10049564]
  9. Mar Biotechnol (NY). 2005 Nov-Dec;7(6):625-33 [PMID: 16027989]
  10. Development. 1997 Aug;124(15):2973-81 [PMID: 9247339]
  11. Dev Dyn. 2004 Nov;231(3):621-30 [PMID: 15376327]
  12. Curr Biol. 2000 Jun 1;10 (11):659-62 [PMID: 10837254]
  13. Nature. 2000 Jul 27;406(6794):369-75 [PMID: 10935626]
  14. BMC Dermatol. 2002 Apr 29;2:7 [PMID: 11978185]
  15. Mol Mar Biol Biotechnol. 1998 Sep;7(3):173-80 [PMID: 9701611]
  16. Mar Biotechnol (NY). 2003 May-Jun;5(3):253-60 [PMID: 14502397]
  17. Mech Dev. 2001 Jul;105(1-2):175-80 [PMID: 11429294]
  18. Cell. 1994 Nov 18;79(4):595-606 [PMID: 7954826]
  19. Development. 1995 Aug;121(8):2595-609 [PMID: 7671822]
  20. Development. 1997 Jun;124(11):2245-54 [PMID: 9187150]
  21. Nat Neurosci. 2001 Jul;4(7):683-4 [PMID: 11426219]
  22. Development. 1993 Apr;117(4):1261-74 [PMID: 8104775]
  23. Science. 1996 Jul 19;273(5273):355-8 [PMID: 8662522]
  24. Mech Dev. 2000 Mar 1;91(1-2):399-402 [PMID: 10704873]
  25. Nature. 2000 Jul 27;406(6794):411-5 [PMID: 10935637]
  26. Genome Res. 2003 Jan;13(1):73-80 [PMID: 12529308]
  27. Nat Genet. 1997 Jul;16(3):283-8 [PMID: 9207795]
  28. Dev Cell. 2002 Jul;3(1):75-84 [PMID: 12110169]
  29. Mar Biotechnol (NY). 2005 May-Jun;7(3):231-5 [PMID: 15864470]
  30. Dev Dyn. 2003 Oct;228(2):281-6 [PMID: 14518000]
  31. Genes Dev. 2003 Apr 1;17(7):912-25 [PMID: 12670869]
  32. Nature. 1998 Jul 23;394(6691):377-81 [PMID: 9690473]
  33. Brain Res Dev Brain Res. 2000 Feb 7;119(2):307-20 [PMID: 10675782]
  34. Curr Biol. 1998 Sep 10;8(18):1027-30 [PMID: 9740806]
  35. Curr Biol. 1998 Aug 27;8(17):979-82 [PMID: 9742402]
  36. Dev Biol. 1995 Sep;171(1):123-9 [PMID: 7556889]
  37. Biochem Biophys Res Commun. 1997 May 29;234(3):754-9 [PMID: 9175788]
  38. Curr Opin Genet Dev. 2004 Aug;14(4):407-14 [PMID: 15261657]
  39. Biol Reprod. 2005 Mar;72(3):510-5 [PMID: 15469998]
  40. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6267-72 [PMID: 9177206]
  41. Dev Genes Evol. 2001 Oct;211(10):493-500 [PMID: 11702199]
  42. Mar Biotechnol (NY). 2004 Sep-Oct;6(5):411-8 [PMID: 15549652]
  43. Dev Growth Differ. 2000 Oct;42(5):469-78 [PMID: 11041488]
  44. Genes Dev. 2000 Jul 1;14(13):1678-90 [PMID: 10887161]
  45. Mech Dev. 2004 Dec;121(12):1443-53 [PMID: 15511637]
  46. Nature. 1997 Mar 27;386(6623):366-73 [PMID: 9121552]
  47. Dev Biol. 1997 Dec 15;192(2):289-99 [PMID: 9441668]
  48. Development. 1996 Jul;122(7):2225-37 [PMID: 8681803]
  49. Yi Chuan Xue Bao. 2004 Jan;31(1):39-42 [PMID: 15468917]

MeSH Term

Animals
Animals, Genetically Modified
Base Sequence
Blotting, Western
Cloning, Molecular
DNA Primers
DNA, Complementary
Female
Gene Expression Regulation, Developmental
Gene Transfer Techniques
Glycosyltransferases
Green Fluorescent Proteins
Microscopy, Fluorescence
Molecular Sequence Data
Promoter Regions, Genetic
Regulatory Sequences, Nucleic Acid
Reverse Transcriptase Polymerase Chain Reaction
Sequence Alignment
Zebrafish
Zebrafish Proteins

Chemicals

DNA Primers
DNA, Complementary
Zebrafish Proteins
Green Fluorescent Proteins
Glycosyltransferases
lfng protein, zebrafish

Word Cloud

Created with Highcharts 10.0.0zebrafishGFPlfngexpressionpromoterlfngEGFP-transgeniceggssomitogenesissomite-specificupstreamregulatoryregionactivity02-kbmaternalLunaticfringeLfngonemodulatorNotchsignalingplaysessentialpartdemarcationtissuesboundariesanimalearlydevelopmentespeciallycharacterizegeneratetransgenicisolatedblastsearchEnsemblgenomedatabasehttp://wwwensemblorganalyzedusinggreenfluorescentproteinreporterPromoterassayshowsfragmentcontainingGC-boxCAAT-boxTATA-boxcandirecttissue-specific4-kb1fragmentssequenceincludeddriveefficientlyproducedfoundersshowingconsequentlygeneratedhemizygouslinefemaleshowstrongconsistentreverse-transcriptionpolymerasechainreactionPCRRT-PCRdetectiontranscriptsfertilizedrevealsfactorexistingmaturedsuggestingfishmayinfluencedfactorsUpstreamlunaticfringe:isolationanalysis

Similar Articles

Cited By