Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription.

Sarmila Majumder, Kalpana Ghoshal, Jharna Datta, David Spencer Smith, Shoumei Bai, Samson T Jacob
Author Information
  1. Sarmila Majumder: Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210. Electronic address: majumder.2@osu.edu.
  2. Kalpana Ghoshal: Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210.
  3. Jharna Datta: Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210.
  4. David Spencer Smith: Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210.
  5. Shoumei Bai: Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210.
  6. Samson T Jacob: Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210. Electronic address: jacob.42@osu.edu.

Abstract

We have previously demonstrated that the expression of human ribosomal RNA genes (rDNA) in normal and cancer cells is differentially regulated by methylation of the promoter CpG islands. Furthermore, we showed that the methyl CpG-binding protein MBD2 plays a selective role in the methylation-mediated block in rDNA expression. Here, we analyzed the role of three functional mammalian DNA methyltransferases (DNMTs) in regulating the rDNA promoters activity. Immunofluorescence analysis and biochemical fractionation showed that all three DNMTs (DNMT1, DNMT3A, and DNMT3B) are associated with the inactive rDNA in the nucleolus. Although DNMTs associate with both methylated and unmethylated rDNA promoters, DNMT1 preferentially associates with the methylated genes. The rDNA primary transcript level was significantly elevated in DNMT1-/- or DNMT3B-/- human colon carcinoma (HCT116) cells. Southern blot analysis demonstrated a moderate level of rDNA promoter hypomethylation in DNMT1-/- cells and a dramatic loss of rDNA promoter methylation in double knockout cells. Transient overexpression of DNMT1 or DNMT3B suppressed the luciferase expression from both methylated and unmethylated pHrD-IRES-Luc, a reporter plasmid where the rDNA promoter drives luciferase expression. DNMT1-mediated suppression of the unmethylated promoter involves de novo methylation of the promoter, whereas histone deacetylase 2 cooperates with DNMT1 to inhibit the methylated rDNA promoter. Unlike DNMT1, both the wild type and catalytically inactive DNMT3B mutant can suppress rDNA promoter irrespective of its methylation status. DNMT3B-mediated suppression of the rDNA promoter also involves histone deacetylation. Treatment of HCT116 cells with Decitabine (a DNMT inhibitor) or trichostatin A (a histone deacetylase inhibitor) up-regulated endogenous rDNA expression. These inhibitors synergistically activated methylated pHrD-IRES-Luc, whereas they exhibited additive effects on the unmethylated promoter. These results demonstrate localization of DNMTs with the inactive rDNA in the nucleolus, the specific role of DNMT1 and DNMT3B in rDNA expression and the differential regulation of rDNA expression from the methylated and unmethylated rDNA promoters.

References

  1. Hum Mol Genet. 2000 Oct;9(16):2395-402 [PMID: 11005794]
  2. Nat Genet. 2002 Nov;32(3):393-6 [PMID: 12368916]
  3. Curr Opin Cell Biol. 2001 Jun;13(3):263-73 [PMID: 11343896]
  4. EMBO J. 2001 May 15;20(10):2536-44 [PMID: 11350943]
  5. J Biol Chem. 2001 Aug 24;276(34):32282-7 [PMID: 11427539]
  6. Mol Cell Biol. 2001 Oct;21(20):6820-32 [PMID: 11564866]
  7. Mol Cell. 2001 Sep;8(3):719-25 [PMID: 11583633]
  8. Cell. 1999 Oct 29;99(3):247-57 [PMID: 10555141]
  9. Cell. 1999 Nov 24;99(5):451-4 [PMID: 10589672]
  10. Nat Genet. 2000 Jul;25(3):269-77 [PMID: 10888872]
  11. Nat Genet. 2000 Jul;25(3):338-42 [PMID: 10888886]
  12. Mol Cell Biol. 2002 Dec;22(23):8302-19 [PMID: 12417732]
  13. Gene Expr. 2002;10(5-6):263-9 [PMID: 12450218]
  14. Nat Genet. 2003 Mar;33 Suppl:245-54 [PMID: 12610534]
  15. J Cell Biochem. 2003 Apr 1;88(5):855-64 [PMID: 12616525]
  16. Nat Rev Mol Cell Biol. 2003 Aug;4(8):641-9 [PMID: 12923526]
  17. Curr Opin Oncol. 2003 Nov;15(6):446-51 [PMID: 14624227]
  18. J Biol Chem. 2004 Feb 20;279(8):6783-93 [PMID: 14610093]
  19. Mol Cell. 2004 Feb 27;13(4):599-609 [PMID: 14992728]
  20. Curr Top Dev Biol. 2004;60:55-89 [PMID: 15094296]
  21. Biochem Biophys Res Commun. 2004 May 28;318(2):544-55 [PMID: 15120635]
  22. Nucleic Acids Res. 2004;32(9):2716-29 [PMID: 15148359]
  23. Novartis Found Symp. 2004;259:226-33; discussion 234-7, 285-8 [PMID: 15171257]
  24. Mol Cell Biol. 2004 Oct;24(20):9048-58 [PMID: 15456878]
  25. Annu Rev Biochem. 1980;49:727-64 [PMID: 6996571]
  26. Cell. 1989 Jun 2;57(5):753-61 [PMID: 2720786]
  27. EMBO J. 1992 Jul;11(7):2611-7 [PMID: 1628623]
  28. Cell. 1992 Nov 27;71(5):865-73 [PMID: 1423634]
  29. Curr Opin Cell Biol. 1994 Jun;6(3):380-9 [PMID: 7917329]
  30. Curr Opin Genet Dev. 1995 Jun;5(3):309-14 [PMID: 7549424]
  31. J Mol Biol. 1996 Apr 19;257(5):935-48 [PMID: 8632476]
  32. J Biol Chem. 1996 May 17;271(20):11852-7 [PMID: 8662629]
  33. Science. 1997 Sep 26;277(5334):1996-2000 [PMID: 9302295]
  34. Nat Genet. 1999 Jan;21(1):103-7 [PMID: 9916800]
  35. Cell Mol Life Sci. 2004 Oct;61(19-20):2571-87 [PMID: 15526163]
  36. Exp Cell Res. 1963;24:SUPPL9:150-63 [PMID: 14046224]
  37. Mol Cell Biol. 2005 Jan;25(2):751-66 [PMID: 15632075]
  38. Mol Cell Biol. 2005 Apr;25(7):2539-46 [PMID: 15767661]
  39. Hum Mol Genet. 2005 Apr 15;14 Spec No 1:R47-58 [PMID: 15809273]
  40. Annu Rev Biochem. 2005;74:481-514 [PMID: 15952895]
  41. Curr Opin Genet Dev. 2005 Oct;15(5):490-5 [PMID: 16098738]
  42. Cancer Res. 2005 Dec 1;65(23):10891-900 [PMID: 16322236]
  43. Cancer Res. 2006 Jan 15;66(2):682-92 [PMID: 16423997]
  44. Mol Cell Biol. 2005 Jun;25(11):4727-41 [PMID: 15899874]
  45. Nucleic Acids Res. 2001 Oct 15;29(20):4114-24 [PMID: 11600700]
  46. FEBS Lett. 2001 Dec 7;509(2):145-50 [PMID: 11741579]
  47. Nat Struct Biol. 2002 Mar;9(3):217-24 [PMID: 11836534]
  48. Chembiochem. 2002 Apr 2;3(4):274-93 [PMID: 11933228]
  49. Nature. 2002 Apr 4;416(6880):552-6 [PMID: 11932749]
  50. J Biol Chem. 2002 May 3;277(18):16048-58 [PMID: 11844796]
  51. Oncogene. 2002 Aug 12;21(35):5361-79 [PMID: 12154399]
  52. Oncogene. 2002 Aug 12;21(35):5483-95 [PMID: 12154409]
  53. J Cell Biochem. 2002;87(2):117-25 [PMID: 12244565]
  54. Gene Expr. 2000;9(1-2):63-75 [PMID: 11097425]

Grants

  1. R01 CA086978/NCI NIH HHS
  2. R01 CA086978-01A2/NCI NIH HHS
  3. ES10874/NIEHS NIH HHS
  4. R01 ES010874-02/NIEHS NIH HHS
  5. R01 CA086978-05/NCI NIH HHS
  6. R01 CA086978-06A1/NCI NIH HHS
  7. R01 CA086978-04/NCI NIH HHS
  8. R01 ES010874-01/NIEHS NIH HHS
  9. R01 ES010874/NIEHS NIH HHS
  10. R01 ES010874-05/NIEHS NIH HHS
  11. CA86978/NCI NIH HHS
  12. R01 CA086978-02/NCI NIH HHS
  13. R01 CA086978-03/NCI NIH HHS
  14. R01 ES010874-04/NIEHS NIH HHS
  15. R01 ES010874-03/NIEHS NIH HHS

MeSH Term

Animals
Cell Line
DNA (Cytosine-5-)-Methyltransferase 1
DNA (Cytosine-5-)-Methyltransferases
DNA Methylation
DNA Methyltransferase 3A
DNA Modification Methylases
DNA, Ribosomal
Gene Expression Regulation
Humans
Mice
Promoter Regions, Genetic
RNA, Ribosomal
Transcription, Genetic
Transfection
DNA Methyltransferase 3B

Chemicals

DNA, Ribosomal
DNMT3A protein, human
Dnmt3a protein, mouse
RNA, Ribosomal
DNA Modification Methylases
DNA (Cytosine-5-)-Methyltransferase 1
DNA (Cytosine-5-)-Methyltransferases
DNA Methyltransferase 3A
DNMT1 protein, human
Dnmt1 protein, mouse

Word Cloud

Created with Highcharts 10.0.0rDNApromoterexpressionDNMT1methylatedcellsunmethylatedmethylationDNMTsDNMT3BhumanrolepromotersinactivehistonedemonstratedribosomalRNAgenesshowedthreeDNAmethyltransferasesanalysisnucleoluslevelDNMT1-/-HCT116luciferasepHrD-IRES-LucsuppressioninvolveswhereasdeacetylaseinhibitorregulationpreviouslynormalcancerdifferentiallyregulatedCpGislandsFurthermoremethylCpG-bindingproteinMBD2playsselectivemethylation-mediatedblockanalyzedfunctionalmammalianregulatingactivityImmunofluorescencebiochemicalfractionationDNMT3AassociatedAlthoughassociatepreferentiallyassociatesprimarytranscriptsignificantlyelevatedDNMT3B-/-coloncarcinomaSouthernblotmoderatehypomethylationdramaticlossdoubleknockoutTransientoverexpressionsuppressedreporterplasmiddrivesDNMT1-mediateddenovo2cooperatesinhibitUnlikewildtypecatalyticallymutantcansuppressirrespectivestatusDNMT3B-mediatedalsodeacetylationTreatmentDecitabineDNMTtrichostatinup-regulatedendogenousinhibitorssynergisticallyactivatedexhibitedadditiveeffectsresultsdemonstratelocalizationspecificdifferentialRolegenetranscription

Similar Articles

Cited By (23)