Testing for differentiation of microbial communities using phylogenetic methods: accounting for uncertainty of phylogenetic inference and character state mapping.

Ryan T Jones, Andrew P Martin
Author Information
  1. Ryan T Jones: Department of Ecology and Evolution, University of Colorado, Boulder, CO 80309, USA. Ryan.Jones@colorado.edu

Abstract

Comparative analyses of microbial communities increasingly involve the assay of 16S rRNA (or other gene) sequences from environmental DNA. Determining whether the composition of two or more communities differ in their phylogenetic composition involves testing for covariation between phylogeny and community type. This approach requires estimating the phylogenetic relationships among all sampled sequences and assessing whether the distribution of sequences among communities differs from the null expectation that sequences are randomly distributed. One method developed for implementing the phylogeny-based test of differentiation, referred to as the Phylogenetic test, relies on a single estimate of the phylogeny. However, for most data sets, many alternative phylogenetic trees provide statistically equivalent descriptions of the data. Because the actual phylogeny is unknown, phylogenetic tests of differentiation among microbial communities must account for phylogenetic uncertainty. In this article, we evaluate bootstrapping and Bayesian phylogenetic methods when implementing the Phylogenetic test using parsimony to map character states, and we investigate the effects of character mapping uncertainty by using a Bayesian approach to stochastically map character states on trees. Our approaches incorporate uncertainty into the tests of two closely related null hypotheses: (1) populations are panmictic, and (2) identical communities existed in both environments over the course of evolutionary history. We use two data sets previously implemented in tests for community differentiation: nitrite reductase genes sampled from marsh and upland soils and 16S rDNA sequences sampled from the human mouth and gut. We show that accounting for phylogenetic and mapping uncertainties can drastically affect results when implementing the Phylogenetic test. Accounting for phylogenetic and character mapping uncertainty provides a more conservative and robust test of covariation between phylogeny and environment when comparing microbial communities using DNA sequences.

References

  1. Nature. 2001 Sep 13;413(6852):157-61 [PMID: 11557979]
  2. Mol Biol Evol. 2003 Feb;20(2):255-66 [PMID: 12598693]
  3. Syst Biol. 2002 Feb;51(1):44-68 [PMID: 11943092]
  4. Evolution. 1991 Aug;45(5):1184-1197 [PMID: 28564173]
  5. J Clin Microbiol. 2005 Aug;43(8):3944-55 [PMID: 16081935]
  6. Science. 2000 Jun 30;288(5475):2349-50 [PMID: 10875916]
  7. Appl Environ Microbiol. 2004 Sep;70(9):5057-65 [PMID: 15345382]
  8. Appl Environ Microbiol. 2004 Sep;70(9):5485-92 [PMID: 15345436]
  9. Syst Biol. 2002 Oct;51(5):729-39 [PMID: 12396587]
  10. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14547-52 [PMID: 10588742]
  11. Science. 2003 Sep 5;301(5638):1359-61 [PMID: 12958355]
  12. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5 [PMID: 16033867]
  13. Evolution. 1985 Jul;39(4):783-791 [PMID: 28561359]
  14. Bioinformatics. 2005 Apr 1;21(7):969-74 [PMID: 15513992]
  15. Nature. 2004 Jul 29;430(6999):551-4 [PMID: 15282603]
  16. Appl Environ Microbiol. 1999 Nov;65(11):4799-807 [PMID: 10543789]
  17. Appl Environ Microbiol. 2002 Apr;68(4):1893-900 [PMID: 11916709]
  18. Appl Environ Microbiol. 2002 Aug;68(8):3673-82 [PMID: 12147459]
  19. Science. 2001 Dec 14;294(5550):2310-4 [PMID: 11743192]
  20. Science. 1997 May 2;276(5313):734-40 [PMID: 9115194]
  21. FEMS Microbiol Ecol. 2005 Sep 1;54(1):47-56 [PMID: 16329971]
  22. Trends Ecol Evol. 2004 Sep;19(9):475-81 [PMID: 16701310]
  23. Science. 2005 Jun 10;308(5728):1635-8 [PMID: 15831718]
  24. Syst Biol. 2003 Apr;52(2):131-58 [PMID: 12746144]
  25. Mol Biol Evol. 2002 Oct;19(10):1717-26 [PMID: 12270898]
  26. Bioinformatics. 1998;14(9):817-8 [PMID: 9918953]
  27. Syst Biol. 2003 Aug;52(4):477-87 [PMID: 12857639]
  28. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16138-43 [PMID: 12451182]
  29. Microb Ecol. 2004 Nov;48(4):509-20 [PMID: 15696384]
  30. Appl Environ Microbiol. 2004 Jul;70(7):4267-75 [PMID: 15240310]
  31. Bioinformatics. 2001 Aug;17(8):754-5 [PMID: 11524383]
  32. Crit Rev Microbiol. 2000;26(1):37-57 [PMID: 10782339]
  33. Appl Environ Microbiol. 2001 Oct;67(10):4399-406 [PMID: 11571135]

MeSH Term

Bacteria
Bayes Theorem
DNA, Bacterial
DNA, Ribosomal
Gastrointestinal Tract
Humans
Mouth
Phylogeny
RNA, Ribosomal, 16S
Soil Microbiology
Stochastic Processes

Chemicals

DNA, Bacterial
DNA, Ribosomal
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0phylogeneticcommunitiessequencestestuncertaintycharactermicrobialphylogenyusingmappingtwoamongsampledimplementingdifferentiationPhylogeneticdatatests16SDNAwhethercompositioncovariationcommunityapproachnullsetstreesBayesianmapstatesaccountingComparativeanalysesincreasinglyinvolveassayrRNAgeneenvironmentalDeterminingdifferinvolvestestingtyperequiresestimatingrelationshipsassessingdistributiondiffersexpectationrandomlydistributedOnemethoddevelopedphylogeny-basedreferredreliessingleestimateHowevermanyalternativeprovidestatisticallyequivalentdescriptionsactualunknownmustaccountarticleevaluatebootstrappingmethodsparsimonyinvestigateeffectsstochasticallyapproachesincorporatecloselyrelatedhypotheses:1populationspanmictic2identicalexistedenvironmentscourseevolutionaryhistoryusepreviouslyimplementeddifferentiation:nitritereductasegenesmarshuplandsoilsrDNAhumanmouthgutshowuncertaintiescandrasticallyaffectresultsAccountingprovidesconservativerobustenvironmentcomparingTestingmethods:inferencestate

Similar Articles

Cited By