"SMART" drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers.

R M Sawant, J P Hurley, S Salmaso, A Kale, E Tolcheva, T S Levchenko, V P Torchilin
Author Information
  1. R M Sawant: Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, USA.

Abstract

To develop targeted pharmaceutical carriers additionally capable of responding to certain local stimuli, such as decreased pH values in tumors or infarcts, targeted long-circulating PEGylated liposomes and PEG-phosphatidylethanolamine (PEG-PE)-based micelles have been prepared with several functions. First, they are capable of targeting a specific cell or organ by attaching the monoclonal antimyosin antibody 2G4 to their surface via pNP-PEG-PE moieties. Second, these liposomes and micelles were additionally modified with biotin or TAT peptide (TATp) moieties attached to the surface of the nanocarrier by using biotin-PE or TATp-PE or TATp-short PEG-PE derivatives. PEG-PE used for liposome surface modification or for micelle preparation was made degradable by inserting the pH-sensitive hydrazone bond between PEG and PE (PEG-Hz-PE). Under normal pH values, biotin and TATp functions on the surface of nanocarriers were "shielded" by long protecting PEG chains (pH-degradable PEG(2000)-PE or PEG(5000)-PE) or by even longer pNP-PEG-PE moieties used to attach antibodies to the nanocarrier (non-pH-degradable PEG(3400)-PE or PEG(5000)-PE). At pH 7.4-8.0, both liposomes and micelles demonstrated high specific binding with 2G4 antibody substrate, myosin, but very limited binding on an avidin column (biotin-containing nanocarriers) or internalization by NIH/3T3 or U-87 cells (TATp-containing nanocarriers). However, upon brief incubation (15-30 min) at lower pH values (pH 5.0-6.0), nanocarriers lost their protective PEG shell because of acidic hydrolysis of PEG-Hz-PE and acquired the ability to become strongly retained on an avidin column (biotin-containing nanocarriers) or effectively internalized by cells via TATp moieties (TATp-containing nanocarriers). We consider this result as the first step in the development of multifunctional stimuli-sensitive pharmaceutical nanocarriers.

References

  1. J Control Release. 2000 Mar 1;65(1-2):271-84 [PMID: 10699287]
  2. Curr Drug Deliv. 2005 Oct;2(4):319-27 [PMID: 16305435]
  3. Mol Ther. 2000 Aug;2(2):121-30 [PMID: 10947939]
  4. Mol Ther. 2001 Mar;3(3):310-8 [PMID: 11273772]
  5. Biochim Biophys Acta. 2001 Apr 2;1511(2):397-411 [PMID: 11286983]
  6. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8786-91 [PMID: 11438707]
  7. Bioconjug Chem. 2002 Jul-Aug;13(4):840-4 [PMID: 12121140]
  8. J Biol Chem. 2002 Aug 16;277(33):30208-18 [PMID: 12034749]
  9. Pharm Res. 2002 Oct;19(10):1424-9 [PMID: 12425458]
  10. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1972-7 [PMID: 12571356]
  11. J Biol Chem. 2003 Mar 28;278(13):11411-8 [PMID: 12519756]
  12. Curr Protein Pept Sci. 2003 Apr;4(2):125-32 [PMID: 12678851]
  13. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6039-44 [PMID: 12716967]
  14. Adv Drug Deliv Rev. 2003 Nov 14;55(11):1439-66 [PMID: 14597140]
  15. Nat Med. 2004 Mar;10(3):310-5 [PMID: 14770178]
  16. Pharm Res. 2004 Mar;21(3):389-93 [PMID: 15070086]
  17. Adv Drug Deliv Rev. 2004 Apr 29;56(8):1177-92 [PMID: 15094214]
  18. Eur J Pharm Biopharm. 2004 Sep;58(2):237-51 [PMID: 15296952]
  19. J Control Release. 2004 Nov 5;100(1):135-44 [PMID: 15491817]
  20. Biochim Biophys Acta. 1984 Mar 1;797(3):363-8 [PMID: 6365177]
  21. Anal Biochem. 1985 Nov 1;150(2):251-7 [PMID: 4091252]
  22. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):664-8 [PMID: 8290579]
  23. Biochim Biophys Acta. 1995 Nov 1;1239(2):133-44 [PMID: 7488618]
  24. J Biol Chem. 1997 Jun 20;272(25):16010-7 [PMID: 9188504]
  25. Biochem Biophys Res Commun. 1998 Oct 20;251(2):538-44 [PMID: 9792809]
  26. Science. 1999 Sep 3;285(5433):1569-72 [PMID: 10477521]
  27. Cell Mol Life Sci. 2004 Oct;61(19-20):2549-59 [PMID: 15526161]
  28. Nat Rev Drug Discov. 2005 Feb;4(2):145-60 [PMID: 15688077]
  29. J Am Chem Soc. 2005 Feb 16;127(6):1656-7 [PMID: 15700997]
  30. Adv Drug Deliv Rev. 2005 Feb 28;57(4):637-51 [PMID: 15722168]
  31. Bioorg Med Chem. 2005 Sep 1;13(17):5043-54 [PMID: 15955702]
  32. Curr Drug Deliv. 2004 Jan;1(1):1-7 [PMID: 16305365]
  33. Adv Drug Deliv Rev. 2000 Mar 30;41(2):201-8 [PMID: 10699315]

Grants

  1. R01 HL55519/NHLBI NIH HHS
  2. R01 HL055519-06/NHLBI NIH HHS
  3. R01 EB001961/NIBIB NIH HHS
  4. R01 HL055519/NHLBI NIH HHS
  5. R01 CA121838-01/NCI NIH HHS
  6. R01 CA121838/NCI NIH HHS
  7. R01 EB001961-07/NIBIB NIH HHS

MeSH Term

Drug Carriers
Drug Delivery Systems
Enzyme-Linked Immunosorbent Assay
Hydrogen-Ion Concentration
Liposomes
Magnetic Resonance Spectroscopy
Micelles
Nanoparticles
Phosphatidylethanolamines
Polyethylene Glycols

Chemicals

Drug Carriers
Liposomes
Micelles
Phosphatidylethanolamines
phosphatidylethanolamine
Polyethylene Glycols

Word Cloud

Created with Highcharts 10.0.0nanocarriersPEGpHsurfacemoieties-PEpharmaceuticalvaluesliposomesPEG-PEmicellesTATptargetedadditionallycapablefunctionsspecificantibody2G4viapNP-PEG-PEbiotinnanocarrierusedPEG-Hz-PE50000bindingavidincolumnbiotin-containingcellsTATp-containingdevelopcarriersrespondingcertainlocalstimulidecreasedtumorsinfarctslong-circulatingPEGylatedPEG-phosphatidylethanolamine-basedpreparedseveralFirsttargetingcellorganattachingmonoclonalantimyosinSecondmodifiedTATpeptideattachedusingbiotin-PETATp-PETATp-shortderivativesliposomemodificationmicellepreparationmadedegradableinsertingpH-sensitivehydrazonebondPEnormal"shielded"longprotectingchainspH-degradable2000evenlongerattachantibodiesnon-pH-degradable340074-8demonstratedhighsubstratemyosinlimitedinternalizationNIH/3T3U-87Howeveruponbriefincubation15-30minlower50-6lostprotectiveshellacidichydrolysisacquiredabilitybecomestronglyretainedeffectivelyinternalizedconsiderresultfirststepdevelopmentmultifunctionalstimuli-sensitive"SMART"drugdeliverysystems:double-targetedpH-responsive

Similar Articles

Cited By