Circadian control of isoprene emissions from oil palm (Elaeis guineensis).

Michael J Wilkinson, Susan M Owen, Malcolm Possell, James Hartwell, Peter Gould, Anthony Hall, Claudia Vickers, C Nicholas Hewitt
Author Information
  1. Michael J Wilkinson: Department of Environmental Science, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.

Abstract

The emission of isoprene from the biosphere to the atmosphere has a profound effect on the Earth's atmospheric system. Until now, it has been assumed that the primary short-term controls on isoprene emission are photosynthetically active radiation and temperature. Here we show that isoprene emissions from a tropical tree (oil palm, Elaeis guineensis) are under strong circadian control, and that the circadian clock is potentially able to gate light-induced isoprene emissions. These rhythms are robustly temperature compensated with isoprene emissions still under circadian control at 38 degrees C. This is well beyond the acknowledged temperature range of all previously described circadian phenomena in plants. Furthermore, rhythmic expression of LHY/CCA1, a genetic component of the central clock in Arabidopsis thaliana, is still maintained at these elevated temperatures in oil palm. Maintenance of the CCA1/LHY-TOC1 molecular oscillator at these temperatures in oil palm allows for the possibility that this system is involved in the control of isoprene emission rhythms. This study contradicts the accepted theory that isoprene emissions are primarily light-induced.

Grants

  1. BBS/B/11125/Biotechnology and Biological Sciences Research Council

MeSH Term

Base Sequence
Butadienes
Circadian Rhythm
DNA Primers
Hemiterpenes
Hot Temperature
Light
Magnoliopsida
Pentanes

Chemicals

Butadienes
DNA Primers
Hemiterpenes
Pentanes
isoprene

Word Cloud

Created with Highcharts 10.0.0isopreneemissionsoilpalmcircadiancontrolemissiontemperaturesystemElaeisguineensisclocklight-inducedrhythmsstilltemperaturesbiosphereatmosphereprofoundeffectEarth'satmosphericnowassumedprimaryshort-termcontrolsphotosyntheticallyactiveradiationshowtropicaltreestrongpotentiallyablegaterobustlycompensated38degreesCwellbeyondacknowledgedrangepreviouslydescribedphenomenaplantsFurthermorerhythmicexpressionLHY/CCA1geneticcomponentcentralArabidopsisthalianamaintainedelevatedMaintenanceCCA1/LHY-TOC1molecularoscillatorallowspossibilityinvolvedstudycontradictsacceptedtheoryprimarilyCircadian

Similar Articles

Cited By