Block by internal Mg2+ causes voltage-dependent inactivation of Kv1.5.

Thomas W Claydon, Daniel C H Kwan, David Fedida, Steven J Kehl
Author Information
  1. Thomas W Claydon: Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.

Abstract

Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.

References

  1. J Membr Biol. 1998 Sep 15;165(2):183-9 [PMID: 9745006]
  2. Biophys J. 1980 Jun;30(3):473-88 [PMID: 6266531]
  3. Neuron. 1991 Nov;7(5):743-53 [PMID: 1742023]
  4. Biophys J. 1995 Dec;69(6):2449-57 [PMID: 8599651]
  5. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13357-61 [PMID: 8917595]
  6. Nature. 2000 Jan 20;403(6767):321-5 [PMID: 10659852]
  7. Nature. 1987 Jan 8-14;325(7000):156-9 [PMID: 2433601]
  8. Neuron. 1991 Oct;7(4):547-56 [PMID: 1931050]
  9. Receptors Channels. 1993;1(1):61-71 [PMID: 8081712]
  10. Eur Biophys J. 2005 Feb;34(1):42-51 [PMID: 15243721]
  11. J Physiol. 1995 Dec 15;489 ( Pt 3):709-21 [PMID: 8788936]
  12. J Physiol. 2003 May 15;549(Pt 1):107-20 [PMID: 12665608]
  13. Cell. 1995 Apr 21;81(2):299-307 [PMID: 7736582]
  14. J Physiol. 1987 Jun;387:251-72 [PMID: 2443681]
  15. Biophys J. 1987 Nov;52(5):707-16 [PMID: 2447963]
  16. J Gen Physiol. 2000 Nov;116(5):623-36 [PMID: 11055991]
  17. J Gen Physiol. 1994 Feb;103(2):203-16 [PMID: 8189205]
  18. J Gen Physiol. 2002 Oct;120(4):539-51 [PMID: 12356855]
  19. J Physiol. 1993 Jan;460:311-26 [PMID: 8487197]
  20. Pflugers Arch. 1987 Dec;410(6):604-13 [PMID: 2453018]
  21. Pflugers Arch. 1993 Jan;422(4):354-63 [PMID: 8437886]
  22. Pflugers Arch. 1997 Nov;434(6):661-8 [PMID: 9305996]
  23. Biophys J. 1996 Jul;71(1):209-19 [PMID: 8804604]
  24. J Physiol. 1997 Mar 15;499 ( Pt 3):661-75 [PMID: 9130163]
  25. J Gen Physiol. 2001 May;117(5):373-84 [PMID: 11331347]
  26. Biophys J. 2000 Nov;79(5):2416-33 [PMID: 11053120]
  27. J Gen Physiol. 1997 Nov;110(5):579-89 [PMID: 9348329]
  28. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5092-5 [PMID: 2052588]
  29. Neuron. 1995 Oct;15(4):951-60 [PMID: 7576643]
  30. EMBO J. 1992 Jul;11(7):2473-86 [PMID: 1378392]
  31. Nature. 2001 Jun 7;411(6838):657-61 [PMID: 11395760]
  32. J Gen Physiol. 1991 Mar;97(3):627-38 [PMID: 2037841]
  33. J Gen Physiol. 1980 Jun;75(6):727-50 [PMID: 6248618]
  34. Science. 1996 Feb 2;271(5249):653-6 [PMID: 8571129]
  35. J Physiol. 2003 Jan 15;546(Pt 2):387-401 [PMID: 12527726]
  36. J Gen Physiol. 1997 Aug;110(2):87-100 [PMID: 9236203]
  37. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2560-4 [PMID: 2436236]
  38. Biophys J. 1994 Apr;66(4):1068-75 [PMID: 8038379]
  39. Eur Biophys J. 1993;22(4):237-47 [PMID: 8253052]

MeSH Term

Binding Sites
Biophysics
Electrophysiology
Humans
Ion Channel Gating
Kinetics
Kv1.5 Potassium Channel
Magnesium
Membrane Potentials
Mutation
Potassium Channels
Protein Binding

Chemicals

KCNA5 protein, human
Kv1.5 Potassium Channel
Potassium Channels
Magnesium

Word Cloud

Created with Highcharts 10.0.0Mg2+voltage-dependentdecaytauslowphase5inactivationfastKv1internalblockcurrentdueC-typemsinducesporedecreasedmVtailcurrentspulsesallowedK+Internalblocksmanypotassiumchannelsincludingshowstronglydepolarisedpotentialscontainscomponentaccelerationfittedbi-exponentialfunctionWithoutvoltage-independent10mM156+40+14023s206shortshowedrisingreflectedunbindingsuggestedcontrastlongerreducedalmostzerosuggestingchannelConsistentmutationR487VequivalentT449VShakerincreasingexternalreducepreventedresultsconsistentopen-channelsubsequentlyrestrictingfillingselectivityfiltersolutionBlockcauses

Similar Articles

Cited By