Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers.

Yanfei Zou, Qun Yu, Xin Bi
Author Information
  1. Yanfei Zou: Department of Biology, University of Rochester, Rochester, NY 14627, USA.

Abstract

In Saccharomyces cerevisiae, silencers flanking the HML and HMR loci consist of various combinations of binding sites for Abf1p, Rap1p, and the origin recognition complex (ORC) that serve to recruit the Sir silencing complex, thereby initiating the establishment of transcriptionally silent chromatin. There have been seemingly conflicting reports concerning whether silencers function in an orientation-dependent or -independent manner, and what determines the directionality of a silencer has not been explored. We demonstrate that chromatin plays a key role in determining the potency and directionality of silencers. We show that nucleosomes are asymmetrically distributed around the HML-I or HMR-E silencer so that a nucleosome is positioned close to the Abf1p side but not the ORC side of the silencer. This coincides with preferential association of Sir proteins and transcriptional silencing on the Abf1p side of the silencer. Elimination of the asymmetry in nucleosome positioning at a silencer leads to comparable silencing on both sides. Asymmetric nucleosome positioning in the immediate vicinity of a silencer is independent of its orientation and genomic context, indicating that it is the inherent property of the silencer. Moreover, it is also independent of the Sir complex and thus precedes the formation of silent chromatin. Finally, we demonstrate that asymmetric positioning of nucleosomes and directional silencing by a silencer depend on ORC and Abf1p. We conclude that the HML-I and HMR-E silencers promote asymmetric positioning of nucleosomes, leading to unequal potentials of transcriptional silencing on their sides and, hence, directional silencing.

References

  1. Science. 1994 Jun 17;264(5166):1768-71 [PMID: 8209257]
  2. Mol Cell Biol. 1992 Mar;12(3):1064-77 [PMID: 1545789]
  3. Mol Cell Biol. 1995 Jul;15(7):3496-506 [PMID: 7791756]
  4. EMBO J. 1996 May 1;15(9):2184-95 [PMID: 8641284]
  5. Mol Cell Biol. 1996 Aug;16(8):4281-94 [PMID: 8754829]
  6. Mol Cell Biol. 1998 Sep;18(9):5392-403 [PMID: 9710623]
  7. Genetics. 1999 Feb;151(2):521-9 [PMID: 9927448]
  8. Methods Enzymol. 1999;304:376-99 [PMID: 10372372]
  9. EMBO J. 1999 Jul 1;18(13):3808-19 [PMID: 10393196]
  10. Mol Cell Biol. 1999 Aug;19(8):5279-88 [PMID: 10409719]
  11. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11934-9 [PMID: 10518554]
  12. Mol Cell Biol. 2005 Jun;25(11):4514-28 [PMID: 15899856]
  13. Cell. 2005 May 20;121(4):515-27 [PMID: 15907466]
  14. Genetics. 2006 Aug;173(4):1939-50 [PMID: 16783021]
  15. Genetics. 2006 Sep;174(1):203-13 [PMID: 16783020]
  16. Mol Cell Biol. 1999 Dec;19(12):7944-50 [PMID: 10567520]
  17. Nature. 1999 Nov 25;402(6760):418-21 [PMID: 10586882]
  18. Nucleic Acids Res. 2000 Mar 15;28(6):1390-6 [PMID: 10684934]
  19. Mol Cell. 2001 Jan;7(1):21-30 [PMID: 11172708]
  20. Curr Opin Cell Biol. 2001 Apr;13(2):232-8 [PMID: 11248558]
  21. Nat Genet. 2001 Aug;28(4):327-34 [PMID: 11455386]
  22. J Biol Chem. 2002 Feb 15;277(7):4778-81 [PMID: 11714726]
  23. Mol Cell Biol. 2002 Jun;22(12):4167-80 [PMID: 12024030]
  24. Methods Enzymol. 2002;350:165-86 [PMID: 12073311]
  25. Bioessays. 2002 Sep;24(9):828-35 [PMID: 12210519]
  26. Science. 2003 Aug 8;301(5634):798-802 [PMID: 12907790]
  27. Genetics. 2003 Sep;165(1):115-25 [PMID: 14504221]
  28. Annu Rev Biochem. 2003;72:481-516 [PMID: 12676793]
  29. Mol Cell Biol. 2004 Mar;24(5):2118-31 [PMID: 14966290]
  30. Genome Biol. 2004;5(4):R22 [PMID: 15059255]
  31. J Biol Chem. 2004 Aug 13;279(33):34865-72 [PMID: 15192094]
  32. Mol Cell Biol. 2004 Oct;24(20):9152-64 [PMID: 15456886]
  33. Nature. 1981 Jan 22;289(5795):239-44 [PMID: 6256655]
  34. Nature. 1981 Jan 22;289(5795):244-50 [PMID: 6256656]
  35. Cell. 1984 Jul;37(3):969-78 [PMID: 6378388]
  36. J Mol Biol. 1984 Jul 5;176(3):307-31 [PMID: 6379190]
  37. J Mol Biol. 1984 Oct 5;178(4):815-34 [PMID: 6092645]
  38. Cell. 1985 May;41(1):41-8 [PMID: 3888409]
  39. Mol Cell Biol. 1988 Jan;8(1):210-25 [PMID: 3275867]
  40. Mol Cell Biol. 1989 Dec;9(12):5464-72 [PMID: 2685566]
  41. Mol Cell Biol. 1989 Nov;9(11):4621-30 [PMID: 2689860]
  42. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4665-9 [PMID: 2191298]
  43. Biochim Biophys Acta. 1994 Nov 22;1219(3):677-89 [PMID: 7948025]

Grants

  1. R01 GM062484/NIGMS NIH HHS
  2. GM62484/NIGMS NIH HHS

MeSH Term

DNA-Binding Proteins
Gene Silencing
Genome, Fungal
Nucleosomes
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Silencer Elements, Transcriptional
Silent Information Regulator Proteins, Saccharomyces cerevisiae
Transcription Factors
Transcription, Genetic

Chemicals

ABF1 protein, S cerevisiae
DNA-Binding Proteins
Nucleosomes
SIR3 protein, S cerevisiae
Saccharomyces cerevisiae Proteins
Silent Information Regulator Proteins, Saccharomyces cerevisiae
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0silencersilencingsilencerspositioningAbf1pchromatinnucleosomescomplexORCSirsilentnucleosomesidedirectionalSaccharomycescerevisiaeestablishmenttranscriptionallydirectionalitydemonstrateHML-IHMR-EtranscriptionalsidesAsymmetricindependentasymmetricflankingHMLHMRlociconsistvariouscombinationsbindingsitesRap1poriginrecognitionserverecruittherebyinitiatingseeminglyconflictingreportsconcerningwhetherfunctionorientation-dependent-independentmannerdeterminesexploredplayskeyroledeterminingpotencyshowasymmetricallydistributedaroundpositionedclosecoincidespreferentialassociationproteinsEliminationasymmetryleadscomparableimmediatevicinityorientationgenomiccontextindicatinginherentpropertyMoreoveralsothusprecedesformationFinallydependconcludepromoteleadingunequalpotentialshence

Similar Articles

Cited By