The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica.

Xuanlin Tu, Tammy Latifi, Alexandre Bougdour, Susan Gottesman, Eduardo A Groisman
Author Information
  1. Xuanlin Tu: Department of Molecular Microbiology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.

Abstract

The sigma factor RpoS regulates the expression of many stress response genes and is required for virulence in several bacterial species. We now report that RpoS accumulates when Salmonella enterica serovar Typhimurium is growing logarithmically in media with low Mg(2+) concentrations. This process requires the two-component regulatory system PhoP/PhoQ, which is specifically activated in low Mg(2+). We show that PhoP controls RpoS protein turnover by serving as a transcriptional activator of the iraP (yaiB) gene, which encodes a product that enhances RpoS stability by interacting with RssB, the protein that normally delivers RpoS to the ClpXP protease for degradation. Mutation of the phoP gene rendered Salmonella as sensitive to hydrogen peroxide as an rpoS mutant after growth in low Mg(2+). In Escherichia coli, low Mg(2+) leads to only modest RpoS stabilization, and iraP is not regulated by PhoP/PhoQ. These findings add the sigma factor RpoS to the regulatory proteins and two-component systems that are elevated in a PhoP/PhoQ-dependent fashion when Salmonella face low Mg(2+) environments. Our data also exemplify the critical differences in regulatory circuits that exist between the closely related enteric bacteria Salmonella and E. coli.

References

  1. J Bacteriol. 2001 Mar;183(5):1787-91 [PMID: 11160113]
  2. J Bacteriol. 1996 Sep;178(17):5092-9 [PMID: 8752324]
  3. Genes Dev. 2001 Mar 1;15(5):627-37 [PMID: 11238382]
  4. Mol Microbiol. 2001 Jun;40(6):1381-90 [PMID: 11442836]
  5. Infect Immun. 2001 Oct;69(10):6463-74 [PMID: 11553591]
  6. Microbiol Mol Biol Rev. 2002 Sep;66(3):373-95, table of contents [PMID: 12208995]
  7. Mol Microbiol. 2002 Sep;45(6):1701-13 [PMID: 12354235]
  8. Mol Microbiol. 2003 Jan;47(1):103-18 [PMID: 12492857]
  9. J Mol Biol. 2003 Jan 24;325(4):795-807 [PMID: 12507481]
  10. J Bacteriol. 2003 Jul;185(13):3696-702 [PMID: 12813061]
  11. J Biol Chem. 2003 Jun 27;278(26):23579-85 [PMID: 12702718]
  12. EMBO J. 2000 Apr 17;19(8):1861-72 [PMID: 10775270]
  13. J Mol Biol. 2000 Jul 7;300(2):291-305 [PMID: 10873466]
  14. Appl Environ Microbiol. 2003 Aug;69(8):4352-8 [PMID: 12902215]
  15. Mol Microbiol. 2003 Oct;50(1):219-30 [PMID: 14507376]
  16. J Bacteriol. 2003 Nov;185(21):6287-94 [PMID: 14563863]
  17. J Biol Chem. 2004 Sep 10;279(37):38618-25 [PMID: 15208313]
  18. Genes Dev. 2004 Sep 15;18(18):2302-13 [PMID: 15371344]
  19. J Bacteriol. 1984 Nov;160(2):668-75 [PMID: 6094482]
  20. Science. 1989 Feb 24;243(4894 Pt 1):1059-62 [PMID: 2646710]
  21. Proc Natl Acad Sci U S A. 1989 May;86(9):3271-5 [PMID: 2541439]
  22. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5054-8 [PMID: 2544889]
  23. Microb Pathog. 1989 Jun;6(6):433-43 [PMID: 2671582]
  24. J Biol Chem. 1991 Jan 15;266(2):815-23 [PMID: 1824701]
  25. Mol Microbiol. 1991 Jan;5(1):3-10 [PMID: 2014002]
  26. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10079-83 [PMID: 1438196]
  27. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11978-82 [PMID: 1465428]
  28. J Bacteriol. 1993 Jan;175(1):259-65 [PMID: 8416901]
  29. Mol Microbiol. 1993 Mar;7(6):825-30 [PMID: 8483415]
  30. Genes Dev. 1994 Jul 1;8(13):1600-12 [PMID: 7525405]
  31. Infect Immun. 1996 Nov;64(11):4739-43 [PMID: 8890234]
  32. Infect Immun. 1997 Jan;65(1):203-10 [PMID: 8975913]
  33. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):934-9 [PMID: 9023360]
  34. Infect Immun. 1997 May;65(5):1786-92 [PMID: 9125562]
  35. J Bacteriol. 1997 Nov;179(22):7040-5 [PMID: 9371451]
  36. J Bacteriol. 1998 May;180(9):2409-17 [PMID: 9573193]
  37. Can J Microbiol. 1998 Aug;44(8):707-17 [PMID: 9830102]
  38. J Bacteriol. 1999 Feb;181(3):799-807 [PMID: 9922242]
  39. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6439-44 [PMID: 10339606]
  40. J Biol Chem. 2005 Feb 11;280(6):4089-94 [PMID: 15569664]
  41. J Bacteriol. 2005 Mar;187(5):1591-603 [PMID: 15716429]
  42. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2862-7 [PMID: 15703297]
  43. Mol Microbiol. 2005 Jul;57(1):85-96 [PMID: 15948951]
  44. J Bacteriol. 2005 Nov;187(22):7549-53 [PMID: 16267278]
  45. Genes Dev. 2006 Apr 1;20(7):884-97 [PMID: 16600914]
  46. J Bacteriol. 1994 Nov;176(22):6852-60 [PMID: 7961444]
  47. Mol Microbiol. 1995 Jul;17(1):155-67 [PMID: 7476202]
  48. J Bacteriol. 1996 Jan;178(2):470-6 [PMID: 8550468]
  49. Cell. 1996 Jan 12;84(1):165-74 [PMID: 8548821]
  50. J Bacteriol. 1996 May;178(9):2572-9 [PMID: 8626324]
  51. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2488-92 [PMID: 8637901]
  52. J Bacteriol. 2001 Mar;183(6):1835-42 [PMID: 11222580]

Grants

  1. R01 AI049561/NIAID NIH HHS
  2. AI49561/NIAID NIH HHS
  3. /Intramural NIH HHS

MeSH Term

Bacterial Proteins
Base Sequence
Gene Expression Regulation, Bacterial
Models, Biological
Molecular Sequence Data
Salmonella enterica
Sequence Homology, Nucleic Acid
Sigma Factor

Chemicals

Bacterial Proteins
PhoQ protein, Bacteria
Sigma Factor
PhoP protein, Bacteria