Modeling cardiac uptake and negative inotropic response of verapamil in rat heart: effect of amiodarone.

Pakawadee Sermsappasuk, Osama Abdelrahman, Michael Weiss
Author Information
  1. Pakawadee Sermsappasuk: Section of Pharmacokinetics, Department of Pharmacology, Martin Luther University Halle-Wittenberg, D-06097, Halle, Germany.

Abstract

PURPOSE: To determine the effect of the P-glycoprotein (Pgp) modulator amiodarone on the pharmacokinetics and pharmacodynamics (PK/PD) of Pgp substrate verapamil in the perfused rat heart.
METHODS: In Langendorff-perfused rat hearts, the outflow concentration-time curve and inotropic response data were measured after a 1.5 nmol dose of [3H]-verapamil (infused within 1 min) in the absence and presence of the amiodarone (1 microM) in perfusate, as well as using a double dosing regimen (0.75 nmol in a 10 min interval). These data were analyzed by a PK/PD model.
RESULTS: Amiodarone failed to influence the rapid uptake and equilibrium partitioning of verapamil into the heart. The time course of the negative inotropic effect of verapamil, including the 'rebound' above the original baseline after the infusion of verapamil was stopped, could be described by a PK/PD tolerance model. Tolerance development (mean delay time, 12 min) led to a reduction in predicted steady-state effect (16%). The EC50 and Emax values as estimated in single dose experiments were 16.4+/-4.1 nM and 50.5+/-18.9 mmHg, respectively.
CONCLUSIONS: The result does not support the hypothesis that Pgp inhibition by amiodarone increases cardiac uptake of the Pgp substrate verapamil.

References

  1. Br J Pharmacol. 2000 Sep;131(1):80-4 [PMID: 10960072]
  2. Biophys J. 1989 Apr;55(4):769-78 [PMID: 2470429]
  3. Br J Clin Pharmacol. 1998 Oct;46(4):307-19 [PMID: 9803978]
  4. Br J Cancer. 1999 Jan;79(1):108-13 [PMID: 10408701]
  5. J Pharm Sci. 1998 Jun;87(6):732-7 [PMID: 9607951]
  6. Am J Physiol Heart Circ Physiol. 2004 Oct;287(4):H1857-67 [PMID: 15130880]
  7. J Cardiovasc Pharmacol. 1990 Jun;15(6):892-9 [PMID: 1694911]
  8. Physiol Rev. 2003 Jan;83(1):59-115 [PMID: 12506127]
  9. J Histochem Cytochem. 2005 Jul;53(7):845-50 [PMID: 15995143]
  10. Drug Metab Dispos. 2001 May;29(5):761-8 [PMID: 11302945]
  11. Am J Med. 2004 Jan 1;116(1):35-43 [PMID: 14706664]
  12. Basic Res Cardiol. 1990 Sep-Oct;85(5):429-34 [PMID: 2275699]
  13. Physiol Rev. 1997 Apr;77(2):545-90 [PMID: 9114823]
  14. J Clin Invest. 2005 Dec;115(12):3306-17 [PMID: 16322774]
  15. Biochem Pharmacol. 2005 Jul 1;70(1):161-9 [PMID: 15919056]
  16. Eur J Pharmacol. 2004 Aug 2;496(1-3):119-27 [PMID: 15288583]
  17. Biochim Biophys Acta. 1995 Sep 13;1238(2):137-46 [PMID: 7548128]
  18. J Cardiovasc Pharmacol. 1990 Oct;16(4):572-83 [PMID: 1706798]
  19. Eur J Pharm Sci. 2006 Jun;28(3):243-8 [PMID: 16574386]
  20. J Biol Chem. 1984 Dec 25;259(24):15013-6 [PMID: 6096353]
  21. J Mol Cell Cardiol. 1997 Dec;29(12):3357-63 [PMID: 9441841]
  22. J Pharmacol Exp Ther. 1998 Mar;284(3):1048-57 [PMID: 9495866]
  23. J Pharmacol Exp Ther. 2002 Feb;300(2):688-94 [PMID: 11805234]
  24. J Histochem Cytochem. 2002 Oct;50(10):1351-6 [PMID: 12364568]
  25. Annu Rev Pharmacol Toxicol. 1997;37:361-96 [PMID: 9131258]
  26. Trends Pharmacol Sci. 1992 Jun;13(6):256-62 [PMID: 1321525]
  27. J Nucl Med. 2005 Sep;46(9):1537-45 [PMID: 16157538]
  28. Naunyn Schmiedebergs Arch Pharmacol. 1997 Jan;355(1):79-86 [PMID: 9007846]
  29. Pharm Res. 2003 Jan;20(1):58-63 [PMID: 12608537]
  30. Drug Metab Dispos. 2003 Jul;31(7):888-91 [PMID: 12814965]
  31. J Pharmacol Exp Ther. 1995 Dec;275(3):1185-94 [PMID: 8531080]
  32. Clin Pharmacol Ther. 1981 Jan;29(1):21-6 [PMID: 6970111]
  33. J Pharmacol Exp Ther. 1982 Jan;220(1):91-6 [PMID: 7053427]
  34. Clin Pharmacol Ther. 2005 Jun;77(6):503-14 [PMID: 15961982]
  35. Jpn J Pharmacol. 2001 Sep;87(1):74-82 [PMID: 11676202]
  36. Toxicol Lett. 2005 Apr 28;156(3):319-29 [PMID: 15763631]
  37. Recent Adv Stud Cardiac Struct Metab. 1975;10:81-8 [PMID: 174169]
  38. J Pharm Sci. 2005 Jun;94(6):1259-76 [PMID: 15858854]
  39. Clin Pharmacokinet. 1999 Feb;36(2):145-67 [PMID: 10092960]
  40. Pharmacol Rev. 2006 Jun;58(2):244-58 [PMID: 16714487]
  41. Eur J Biochem. 1995 Mar 15;228(3):1020-9 [PMID: 7737146]

MeSH Term

ATP Binding Cassette Transporter, Subfamily B, Member 1
Algorithms
Amiodarone
Animals
Anti-Arrhythmia Agents
Calcium Channel Blockers
Data Interpretation, Statistical
Heart
In Vitro Techniques
Male
Models, Statistical
Myocardium
Rats
Rats, Wistar
Verapamil

Chemicals

ATP Binding Cassette Transporter, Subfamily B, Member 1
Anti-Arrhythmia Agents
Calcium Channel Blockers
Verapamil
Amiodarone

Word Cloud

Created with Highcharts 10.0.0verapamileffectPgpamiodarone1PK/PDratinotropicminuptakesubstrateheartresponsedatanmoldosemodeltimenegativecardiacPURPOSE:determineP-glycoproteinmodulatorpharmacokineticspharmacodynamicsperfusedMETHODS:Langendorff-perfusedheartsoutflowconcentration-timecurvemeasured5[3H]-verapamilinfusedwithinabsencepresencemicroMperfusatewellusingdoubledosingregimen07510intervalanalyzedRESULTS:Amiodaronefailedinfluencerapidequilibriumpartitioningcourseincluding'rebound'originalbaselineinfusionstoppeddescribedtoleranceTolerancedevelopmentmeandelay12ledreductionpredictedsteady-state16%EC50Emaxvaluesestimatedsingleexperiments164+/-4nM505+/-189mmHgrespectivelyCONCLUSIONS:resultsupporthypothesisinhibitionincreasesModelingheart:

Similar Articles

Cited By