A comparative analysis of influenza vaccination programs.

Shweta Bansal, Babak Pourbohloul, Lauren Ancel Meyers
Author Information
  1. Shweta Bansal: Computational and Applied Mathematics, University of Texas Austin, Austin, Texas, United States of America.

Abstract

BACKGROUND: The threat of avian influenza and the 2004-2005 influenza vaccine supply shortage in the United States have sparked a debate about optimal vaccination strategies to reduce the burden of morbidity and mortality caused by the influenza virus.
METHODS AND FINDINGS: We present a comparative analysis of two classes of suggested vaccination strategies: mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations. Applying the methods of contact network epidemiology to a model of disease transmission in a large urban population, we assume that vaccine supplies are limited and then evaluate the efficacy of these strategies across a wide range of viral transmission rates and for two different age-specific mortality distributions. We find that the optimal strategy depends critically on the viral transmission level (reproductive rate) of the virus: morbidity-based strategies outperform mortality-based strategies for moderately transmissible strains, while the reverse is true for highly transmissible strains. These results hold for a range of mortality rates reported for prior influenza epidemics and pandemics. Furthermore, we show that vaccination delays and multiple introductions of disease into the community have a more detrimental impact on morbidity-based strategies than mortality-based strategies.
CONCLUSIONS: If public health officials have reasonable estimates of the viral transmission rate and the frequency of new introductions into the community prior to an outbreak, then these methods can guide the design of optimal vaccination priorities. When such information is unreliable or not available, as is often the case, this study recommends mortality-based vaccination priorities.

References

  1. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):338-42 [PMID: 8990210]
  2. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11059-63 [PMID: 16046546]
  3. Am J Epidemiol. 1982 May;115(5):736-51 [PMID: 7081204]
  4. N Engl J Med. 2001 Mar 22;344(12):889-96 [PMID: 11259722]
  5. Am J Epidemiol. 1985 Jun;121(6):811-22 [PMID: 4014174]
  6. Am J Epidemiol. 1982 Aug;116(2):212-27 [PMID: 7114033]
  7. Emerg Infect Dis. 2003 Feb;9(2):204-10 [PMID: 12603991]
  8. Epidemiol Rev. 1996;18(1):64-76 [PMID: 8877331]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):055103 [PMID: 12059627]
  10. JAMA. 2004 Sep 15;292(11):1333-40 [PMID: 15367555]
  11. MMWR Recomm Rep. 2004 May 28;53(RR-6):1-40 [PMID: 15163927]
  12. Nature. 2004 Dec 16;432(7019):904-6 [PMID: 15602562]
  13. Clin Infect Dis. 2001 Oct 15;33(8):1375-8 [PMID: 11565078]
  14. Am J Epidemiol. 2005 Feb 15;161(4):303-6 [PMID: 15692073]
  15. JAMA. 1994 Dec 7;272(21):1661-5 [PMID: 7966893]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036104 [PMID: 11909162]
  17. Am Rev Respir Dis. 1981 Dec;124(6):681-4 [PMID: 7316272]
  18. Nature. 2005 Sep 8;437(7056):209-14 [PMID: 16079797]
  19. J Hyg (Lond). 1981 Jun;86(3):303-13 [PMID: 7016989]
  20. Emerg Infect Dis. 2006 Jan;12(1):110-3 [PMID: 16494726]
  21. Vaccine. 2004 Jan 2;22(3-4):301-2 [PMID: 14670308]
  22. J Theor Biol. 2006 Jun 7;240(3):400-18 [PMID: 16300796]
  23. Stat Med. 2004 Nov 30;23(22):3469-87 [PMID: 15505892]
  24. J Hyg (Lond). 1978 Aug;81(1):67-75 [PMID: 690425]
  25. J Theor Biol. 2005 Jan 7;232(1):71-81 [PMID: 15498594]
  26. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128 [PMID: 12241447]
  27. Health Care Manag Sci. 2004 May;7(2):127-34 [PMID: 15152977]
  28. JAMA. 2003 Jan 8;289(2):179-86 [PMID: 12517228]
  29. J Theor Biol. 2005 May 21;234(2):201-12 [PMID: 15757679]
  30. Emerg Infect Dis. 2005 Aug;11(8):1249-56 [PMID: 16102315]
  31. Am J Epidemiol. 2004 Apr 1;159(7):623-33 [PMID: 15033640]

MeSH Term

Adolescent
Adult
Age Distribution
Aged
Child
Child, Preschool
Disease Outbreaks
Female
Humans
Infant
Influenza, Human
Male
Mass Vaccination
Middle Aged
Models, Statistical
Prevalence

Word Cloud

Created with Highcharts 10.0.0strategiesvaccinationinfluenzamortality-basedtransmissionoptimalmortalitymorbidity-basedviralvaccinecomparativeanalysistwotargetpopulationsmethodsdiseaserangeratesratetransmissiblestrainspriorintroductionscommunityprioritiesBACKGROUND:threatavian2004-2005supplyshortageUnitedStatessparkeddebatereduceburdenmorbiditycausedvirusMETHODSANDFINDINGS:presentclassessuggestedstrategies:high-riskhigh-prevalenceApplyingcontactnetworkepidemiologymodellargeurbanpopulationassumesupplieslimitedevaluateefficacyacrosswidedifferentage-specificdistributionsfindstrategydependscriticallylevelreproductivevirus:outperformmoderatelyreversetruehighlyresultsholdreportedepidemicspandemicsFurthermoreshowdelaysmultipledetrimentalimpactCONCLUSIONS:publichealthofficialsreasonableestimatesfrequencynewoutbreakcanguidedesigninformationunreliableavailableoftencasestudyrecommendsprograms

Similar Articles

Cited By