Neural mechanisms of expert skills in visual working memory.

Christopher D Moore, Michael X Cohen, Charan Ranganath
Author Information
  1. Christopher D Moore: Department of Psychology, Princeton University, New Jersey 08540, USA. cdm@princeton.edu

Abstract

Expertise can increase working memory (WM) performance, but the cognitive and neural mechanisms of these improvements remain unclear. Here, we used functional magnetic resonance imaging to assess the degree to which expertise acquisition is supported by tuning of occipitotemporal object representations and tuning of prefrontal and parietal networks that may support domain-specific WM skills. We trained subjects to become experts in a novel category of complex visual objects and examined brain activity while they performed a WM task with objects from the expert category and from an untrained category. Visual expertise training resulted in improved recognition of expert, compared with untrained objects, and this effect was eliminated in a behavioral experiment by stimulus inversion. These behavioral changes were accompanied by increased recruitment of bilateral dorsolateral prefrontal, posterior parietal, and occipitotemporal cortices during WM encoding and maintenance. Across subjects, behavioral measures of expertise reliably predicted increased activation during maintenance of expert objects in all three regions. These neural expertise effects could not be attributed to differences in low-level stimulus characteristics between the two categories, familiarity with features of expert-domain objects, or familiarity with the WM task. These results are consistent with the idea that visual expertise improves WM performance through tuning of occipitotemporal object representations and through development of lateral prefrontal and posterior parietal networks that mediate the application of domain-specific mnemonic skills.

References

  1. Nat Neurosci. 1999 Jun;2(6):568-73 [PMID: 10448223]
  2. Nat Neurosci. 1999 Nov;2(11):1019-25 [PMID: 10526343]
  3. Trends Cogn Sci. 2000 Jan;4(1):1-2 [PMID: 10637614]
  4. Nat Neurosci. 2000 Feb;3(2):191-7 [PMID: 10649576]
  5. Brain Res Brain Res Protoc. 2000 Feb;5(1):57-66 [PMID: 10719266]
  6. Curr Opin Neurobiol. 2000 Apr;10(2):187-94 [PMID: 10753793]
  7. J Neurosci. 2000 May 1;20(9):3310-8 [PMID: 10777794]
  8. Science. 2000 Jun 2;288(5471):1656-60 [PMID: 10834847]
  9. Nat Neurosci. 2000 Aug;3(8):837-43 [PMID: 10903579]
  10. Neuron. 2000 Jul;27(1):179-89 [PMID: 10939341]
  11. Nat Rev Neurosci. 2000 Nov;1(2):91-100 [PMID: 11252779]
  12. Neuroimage. 2001 Apr;13(4):751-8 [PMID: 11305902]
  13. Vision Res. 2001;41(10-11):1409-22 [PMID: 11322983]
  14. Trends Cogn Sci. 2001 Jun 1;5(6):236-243 [PMID: 11390294]
  15. Behav Brain Sci. 2001 Feb;24(1):87-114; discussion 114-85 [PMID: 11515286]
  16. Neuron. 2001 Sep 13;31(5):865-73 [PMID: 11567623]
  17. Behav Neurol. 2000;12(4):191-200 [PMID: 11568431]
  18. Nature. 2002 Jan 17;415(6869):318-20 [PMID: 11797008]
  19. Nat Neurosci. 2002 May;5(5):479-84 [PMID: 11953754]
  20. Psychol Sci. 2002 May;13(3):250-7 [PMID: 12009046]
  21. Cereb Cortex. 2002 Aug;12(8):866-76 [PMID: 12122035]
  22. Percept Psychophys. 2002 Aug;64(6):882-95 [PMID: 12269296]
  23. Neuron. 2002 Aug 29;35(5):975-87 [PMID: 12372290]
  24. Neuropsychologia. 2003;41(3):263-70 [PMID: 12457752]
  25. Nat Neurosci. 2003 Jan;6(1):75-81 [PMID: 12469132]
  26. Neuron. 2003 Jan 23;37(2):361-7 [PMID: 12546829]
  27. Nat Rev Neurosci. 2003 Mar;4(3):193-202 [PMID: 12612632]
  28. J Cogn Neurosci. 2003 May 15;15(4):600-9 [PMID: 12803970]
  29. J Neurosci. 2003 Jun 15;23(12):5235-46 [PMID: 12832548]
  30. Psychol Rev. 1956 Mar;63(2):81-97 [PMID: 13310704]
  31. Nat Neurosci. 2004 Jan;7(1):70-4 [PMID: 14647291]
  32. Nat Neurosci. 2004 Jan;7(1):75-9 [PMID: 14699419]
  33. PLoS Biol. 2004 Feb;2(2):E44 [PMID: 14966538]
  34. Neuroimage. 2004 Apr;21(4):1639-51 [PMID: 15050587]
  35. J Cogn Neurosci. 2004 Mar;16(2):189-203 [PMID: 15068591]
  36. Nat Neurosci. 2004 May;7(5):555-62 [PMID: 15077112]
  37. Nature. 2004 Apr 15;428(6984):751-4 [PMID: 15085133]
  38. J Neurosci. 2004 Apr 21;24(16):3917-25 [PMID: 15102907]
  39. J Neurosci. 2004 Apr 21;24(16):3944-52 [PMID: 15102910]
  40. Brain Res Cogn Brain Res. 2004 Jun;20(1):37-45 [PMID: 15130587]
  41. Eur J Neurosci. 2004 Jun;19(12):3365-70 [PMID: 15217392]
  42. Nat Rev Neurosci. 2004 Aug;5(8):617-29 [PMID: 15263892]
  43. Cereb Cortex. 2005 Aug;15(8):1234-42 [PMID: 15677350]
  44. Memory. 2004 Nov;12(6):732-47 [PMID: 15724362]
  45. J Cogn Neurosci. 2005 Mar;17(3):507-17 [PMID: 15814009]
  46. Curr Opin Neurobiol. 2005 Apr;15(2):175-82 [PMID: 15831399]
  47. J Cogn Neurosci. 2005 Jul;17(7):994-1010 [PMID: 16102232]
  48. Trends Cogn Sci. 2006 Jan;10(1):14-23 [PMID: 16321563]
  49. Neuroscience. 2006 Apr 28;139(1):277-89 [PMID: 16343785]
  50. Nature. 2006 Mar 2;440(7080):91-5 [PMID: 16382240]
  51. Cereb Cortex. 2007 Apr;17(4):778-86 [PMID: 16707737]
  52. J Exp Psychol Gen. 1986 Jun;115(2):107-17 [PMID: 2940312]
  53. J Neurophysiol. 1995 Sep;74(3):1192-9 [PMID: 7500143]
  54. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9 [PMID: 7667258]
  55. Psychol Rev. 1995 Apr;102(2):211-45 [PMID: 7740089]
  56. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13494-9 [PMID: 8942962]
  57. Nature. 1997 Apr 10;386(6625):608-11 [PMID: 9121584]
  58. J Neurosci. 1997 Jun 1;17(11):4302-11 [PMID: 9151747]
  59. Vision Res. 1997 Jun;37(12):1673-82 [PMID: 9231232]
  60. Curr Biol. 1997 Sep 1;7(9):645-51 [PMID: 9285718]
  61. Neuroimage. 1997 Aug;6(2):122-38 [PMID: 9299386]
  62. Neuroimage. 1995 Sep;2(3):173-81 [PMID: 9343600]
  63. Neuroimage. 1997 Apr;5(3):179-97 [PMID: 9345548]
  64. Neuroimage. 1997 Apr;5(3):199-212 [PMID: 9345549]
  65. Nature. 1997 Nov 20;390(6657):279-81 [PMID: 9384378]
  66. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):839-46 [PMID: 9448249]
  67. Cognition. 1998 May;66(2):115-52 [PMID: 9677761]
  68. Neuroimage. 1998 Nov;8(4):360-9 [PMID: 9811554]

Grants

  1. P01 NS040813/NINDS NIH HHS
  2. R01 HL067821/NHLBI NIH HHS
  3. P01 NS40813/NINDS NIH HHS
  4. R01 MH067821/NIMH NIH HHS

MeSH Term

Brain Mapping
Female
Humans
Learning
Magnetic Resonance Imaging
Male
Memory, Short-Term
Nerve Net
Photic Stimulation
Psychomotor Performance
Reaction Time

Word Cloud

Created with Highcharts 10.0.0WMexpertiseobjectsexperttuningoccipitotemporalprefrontalparietalskillscategoryvisualbehavioralworkingmemoryperformanceneuralmechanismsobjectrepresentationsnetworksdomain-specificsubjectstaskuntrainedstimulusincreasedposteriormaintenancefamiliarityExpertisecanincreasecognitiveimprovementsremainunclearusedfunctionalmagneticresonanceimagingassessdegreeacquisitionsupportedmaysupporttrainedbecomeexpertsnovelcomplexexaminedbrainactivityperformedVisualtrainingresultedimprovedrecognitioncomparedeffecteliminatedexperimentinversionchangesaccompaniedrecruitmentbilateraldorsolateralcorticesencodingAcrossmeasuresreliablypredictedactivationthreeregionseffectsattributeddifferenceslow-levelcharacteristicstwocategoriesfeaturesexpert-domainresultsconsistentideaimprovesdevelopmentlateralmediateapplicationmnemonicNeural

Similar Articles

Cited By