Learning receptive fields using predictive feedback.

Janneke F M Jehee, Constantin Rothkopf, Jeffrey M Beck, Dana H Ballard
Author Information
  1. Janneke F M Jehee: Center for Visual Science, Department of Computer Science, University of Rochester, 242 Meliora Hall, Rochester, NY 14627-0270, USA. jjehee@cvs.rochester.edu

Abstract

Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.

References

  1. J Neurophysiol. 1999 Nov;82(5):2490-502 [PMID: 10561421]
  2. Vision Res. 2000;40(10-12):1385-411 [PMID: 10788648]
  3. J Neurosci. 2000 Mar 1;20(5):RC61 [PMID: 10684908]
  4. Neuron. 2002 Dec 5;36(5):791-804 [PMID: 12467584]
  5. J Physiol. 1968 Mar;195(1):215-43 [PMID: 4966457]
  6. J Neurophysiol. 1983 May;49(5):1127-47 [PMID: 6864242]
  7. J Neurophysiol. 1984 Dec;52(6):1106-30 [PMID: 6520628]
  8. Annu Rev Neurosci. 1985;8:407-30 [PMID: 3885829]
  9. Nature. 1986 Mar 27-Apr 2;320(6060):362-5 [PMID: 3960119]
  10. J Neurophysiol. 1987 Mar;57(3):835-68 [PMID: 3559704]
  11. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3936-40 [PMID: 3108884]
  12. J Neurosci. 1987 Nov;7(11):3378-415 [PMID: 2824714]
  13. J Opt Soc Am A. 1987 Dec;4(12):2379-94 [PMID: 3430225]
  14. J Neurophysiol. 1987 Dec;58(6):1233-58 [PMID: 3437332]
  15. Vis Neurosci. 1991 May;6(5):507-18 [PMID: 2069902]
  16. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2595-9 [PMID: 1557363]
  17. Neuroreport. 1992 Jan;3(1):69-72 [PMID: 1611037]
  18. Cereb Cortex. 1991 Jan-Feb;1(1):1-47 [PMID: 1822724]
  19. J Neurosci. 1994 Jan;14(1):409-41 [PMID: 8283248]
  20. J Neurosci. 1995 Feb;15(2):1605-15 [PMID: 7869121]
  21. J Neurosci. 1996 May 15;16(10):3351-62 [PMID: 8627371]
  22. Nature. 1996 Jun 13;381(6583):607-9 [PMID: 8637596]
  23. Nature. 1997 May 15;387(6630):281-4 [PMID: 9153392]
  24. Nature. 1998 Aug 20;394(6695):784-7 [PMID: 9723617]
  25. Curr Opin Neurobiol. 1998 Aug;8(4):529-35 [PMID: 9751656]
  26. J Neurophysiol. 1998 Oct;80(4):1816-27 [PMID: 9772241]
  27. Vision Res. 1998 Aug;38(15-16):2429-54 [PMID: 9798008]
  28. Nat Neurosci. 1999 Jan;2(1):79-87 [PMID: 10195184]
  29. Nature. 1999 Aug 26;400(6747):869-73 [PMID: 10476965]
  30. Network. 2011;22(1-4):4-44 [PMID: 22149669]

Grants

  1. R01 EY005729/NEI NIH HHS
  2. R01 EY005729-17A1/NEI NIH HHS
  3. R01 RR009283/NCRR NIH HHS
  4. R01 RR009283-09/NCRR NIH HHS

MeSH Term

Algorithms
Animals
Computer Simulation
Feedback
Forecasting
Humans
Learning
Models, Neurological
Neural Networks, Computer
Photic Stimulation
Visual Cortex
Visual Fields

Word Cloud

Created with Highcharts 10.0.0feedbackreceptivelower-levelmodelnaturalpredictivepropertiesinputvisualconnectionscarrypredictionsactivitieshypothesislearnedfieldsexposedimagesMSTusingefficientlyencodefieldPreviouslysuggestedhigher-areasneuralwhereasfeedforwardresidualerroractual[RaoRPNBallardDH1999NatureNeuroscience279-87]computationalimplementingsimplecelluseexplaintuningmedialsuperiortemporalareaimplementnewbiologicallyplausiblealgorithmbasedmatchingpursuitretainsfeaturespreviousimplementationincludingabilitypresenteddevelopedfoundprimarycortexadditionmotionresultingmovementsspaceresemblingresultscorroborateideageneralprincipleusedsystemLearning

Similar Articles

Cited By