B-cell-targeted therapy for systemic lupus erythematosus.

Ramin Sabahi, Jennifer H Anolik
Author Information
  1. Ramin Sabahi: University of Rochester School of Medicine, Rochester, New York 14642, USA.

Abstract

Systemic lupus erythematosus (SLE) is a complex disease characterised by numerous autoantibodies and clinical involvement in multiple organ systems. The immunological events triggering the onset of clinical manifestations have not yet been fully defined, but a central role for B cells in the pathogenesis of this disease has more recently gained prominence as a result of research in both mice and humans. Both antibody-dependent and -independent mechanisms of B cells are important in SLE. Autoantibodies contribute to autoimmunity by multiple mechanisms, including immune complex-mediated type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines such as interferon-alpha, tumour necrosis factor and interleukin-1. Suggested autoantibody-independent B-cell functions include antigen presentation, T-cell activation and polarisation, and dendritic-cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines, chemokines and lymphangiogenic growth factors, and by their critical contribution to lymphoid tissue development and organisation, including the development of ectopic tertiary lymphoid tissue. Given the large body of evidence implicating abnormalities in the B-cell compartment in SLE, a recent therapeutic focus has been to develop interventions that target the B-cell compartment by multiple mechanisms.Rituximab, a mouse-human chimeric monoclonal antibody against CD20 that specifically depletes B cells, has been studied the most extensively. Although promising open-label data await confirmation in ongoing multicentre placebo-controlled trials, a number of preliminary conclusions can be drawn. The adequacy of peripheral B-cell depletion depends on achieving high and sustained serum rituximab concentrations, pharmacokinetics that can be varied with treatment dose and factors that may affect drug clearance, such as human anti-chimeric antibodies. In SLE patients with effective B-cell depletion, the clinical response can be significant, with favourable responses observed in a diverse array of disease manifestations. Moreover, rituximab appears to have the potential to induce clinical remission in severe, refractory disease. B-cell depletion has the potential to induce disease amelioration by inhibiting autoantibody production and/or by interfering with other B-cell pathogenic functions. The fact that clinical improvement correlates with B-cell depletion and precedes by several months any decline in serum levels of relevant autoantibodies suggests a predominant effect of autoantibody-independent functions of B cells, although the subset of patients with disease remission ultimately also experience autoantibody normalisation. Significant questions remain about rituximab therapy in SLE, including the immunological determinants of treatment response and remission, the role of combination therapy, and the safety of repeated courses of rituximab. In addition, the efficacy and role of other B-cell-depleting approaches, such as humanised anti-CD20 antibodies and anti-CD22, remain to be defined. Another B-cell-targeted therapeutic approach is to block costimulatory interactions between T and B cells. Blockade of the CD40-CD40 ligand pathway has met with variable clinical benefit and unfortunate thromboembolic complications, although inhibition of the B7 pathway with cytotoxic T-lymphocyte antigen-4Ig is currently under early investigation in SLE clinical trials. Preliminary data on the treatment of SLE with belimumab, a fully human monoclonal antibody that specifically binds to and neutralises the B-lymphocyte stimulator (BLyS or B-cell-activating factor [BAFF]), are now available. In a phase II double-blind, placebo-controlled trial of the safety and efficacy of three different doses administered in addition to standard therapy, belimumab was well tolerated but reportedly did not meet primary efficacy endpoints. Blockade of BAFF is still viewed as a promising therapeutic approach and additional agents that interfere with the BAFF pathway are under study.Overall, therapies targeting B cells appear to be promising in the treatment of SLE, provide additional evidence for the importance of B cells to disease pathogenesis, and will continue to elucidate the diverse roles of B cells in this disease.

References

  1. J Exp Med. 2002 Jul 1;196 (1):135-40 [PMID: 12093878]
  2. Blood. 2002 Sep 15;100(6):2257-9 [PMID: 12200395]
  3. Lancet. 1999 Dec 4;354(9194):1932-9 [PMID: 10622295]
  4. Transplantation. 2004 Feb 27;77(4):542-8 [PMID: 15084932]
  5. Blood. 2002 Feb 1;99(3):754-8 [PMID: 11806974]
  6. J Clin Invest. 2005 Feb;115(2):407-17 [PMID: 15668740]
  7. J Clin Oncol. 2001 Apr 15;19(8):2153-64 [PMID: 11304767]
  8. Curr Opin Immunol. 2002 Aug;14(4):517-21 [PMID: 12088688]
  9. Arthritis Rheum. 2001 Jul;44(7):1717-8 [PMID: 11465726]
  10. J Immunol. 1994 Feb 1;152(3):1453-61 [PMID: 8301145]
  11. Semin Oncol. 2002 Feb;29(1S2):2-9 [PMID: 28140087]
  12. J Clin Pharmacol. 2005 Jul;45(7):792-801 [PMID: 15951469]
  13. Arthritis Res Ther. 2006;8(3):R83 [PMID: 16677395]
  14. Arthritis Rheum. 2005 Feb;52(2):501-13 [PMID: 15693003]
  15. Immunobiology. 2002 Dec;206(5):519-27 [PMID: 12607727]
  16. Blood. 1994 Jan 15;83(2):435-45 [PMID: 7506951]
  17. J Clin Invest. 1999 May;103(9):1243-52 [PMID: 10225967]
  18. Rheumatology (Oxford). 2005 Dec;44(12):1542-5 [PMID: 16188950]
  19. Arthritis Rheum. 2006 May;54(5):1390-400 [PMID: 16649186]
  20. Nature. 2000 Apr 27;404(6781):995-9 [PMID: 10801128]
  21. Blood. 2004 Jun 15;103(12):4416-23 [PMID: 14976046]
  22. N Engl J Med. 2004 Jun 17;350(25):2572-81 [PMID: 15201414]
  23. J Immunol. 2000 Nov 15;165(10):5558-65 [PMID: 11067910]
  24. Immunol Rev. 1999 Jun;169:107-21 [PMID: 10450512]
  25. Drugs. 2006;66(5):625-39 [PMID: 16620141]
  26. Blood. 2003 Jan 1;101(1):6-14 [PMID: 12393429]
  27. Arthritis Rheum. 2002 Oct;46(10):2673-7 [PMID: 12384926]
  28. J Clin Invest. 2003 Nov;112(10):1506-20 [PMID: 14617752]
  29. Arthritis Rheum. 2002 Dec;46(12):3251-8 [PMID: 12483729]
  30. Arthritis Rheum. 2003 Feb;48(2):495-506 [PMID: 12571860]
  31. Arthritis Rheum. 2003 Dec;48(12):3475-86 [PMID: 14673998]
  32. Arthritis Rheum. 2004 Aug;50(8):2580-9 [PMID: 15334472]
  33. Arthritis Rheum. 2005 Oct;52(10):3168-74 [PMID: 16200620]
  34. Arthritis Rheum. 2006 Sep;54(9):2970-82 [PMID: 16947528]
  35. Arthritis Rheum. 2002 Jun;46(6):1554-62 [PMID: 12115186]
  36. Clin Cancer Res. 2004 Apr 15;10(8):2868-78 [PMID: 15102696]
  37. Nat Rev Immunol. 2006 May;6(5):394-403 [PMID: 16622478]
  38. Blood. 2004 Sep 15;104(6):1793-800 [PMID: 15172969]
  39. Ann Oncol. 1998 May;9(5):527-34 [PMID: 9653494]
  40. J Exp Med. 1994 Oct 1;180(4):1295-306 [PMID: 7931063]
  41. J Exp Med. 1999 Apr 19;189(8):1307-13 [PMID: 10209047]
  42. Rheum Dis Clin North Am. 2006 Feb;32(1):149-56, x [PMID: 16504827]
  43. J Immunol. 2001 Jan 1;166(1):6-10 [PMID: 11123269]
  44. J Immunol. 2006 Feb 1;176(3):1506-16 [PMID: 16424179]
  45. Am J Hematol. 2002 Aug;70(4):329 [PMID: 12214584]
  46. Immunity. 2004 Apr;20(4):441-53 [PMID: 15084273]
  47. Ann Rheum Dis. 2005 Nov;64 Suppl 4:iv55-7 [PMID: 16239389]
  48. Ann Rheum Dis. 2006 Jul;65(7):942-5 [PMID: 16269424]
  49. J Clin Oncol. 2005 Feb 1;23(4):705-11 [PMID: 15598978]
  50. Arthritis Rheum. 2004 Nov;50(11):3580-90 [PMID: 15529346]
  51. J Exp Med. 2001 Dec 17;194(12):F59-63 [PMID: 11748288]
  52. J Immunol. 2005 Jan 15;174(2):817-26 [PMID: 15634903]
  53. J Exp Med. 2004 Jun 7;199(11):1577-84 [PMID: 15173206]
  54. Arthritis Res Ther. 2006;8(3):R74 [PMID: 16630358]
  55. J Exp Med. 1999 May 17;189(10):1639-48 [PMID: 10330443]
  56. Curr Opin Rheumatol. 2005 Sep;17(5):550-7 [PMID: 16093832]
  57. Immunity. 2003 Dec;19(6):837-47 [PMID: 14670301]
  58. J Immunol. 2003 Sep 15;171(6):3296-302 [PMID: 12960360]
  59. J Exp Med. 1999 Dec 6;190(11):1697-710 [PMID: 10587360]
  60. Nature. 2002 Apr 11;416(6881):603-7 [PMID: 11948342]
  61. N Engl J Med. 2003 Nov 13;349(20):1907-15 [PMID: 14614165]
  62. Semin Oncol. 2004 Feb;31 Suppl 2:17-21 [PMID: 28140104]
  63. Am J Transplant. 2006 May;6(5 Pt 1):859-66 [PMID: 16611321]
  64. Best Pract Res Clin Rheumatol. 2002 Dec;16(5):847-58 [PMID: 12473278]
  65. Arthritis Res Ther. 2003;5 Suppl 4:S22-7 [PMID: 15180894]
  66. Rheum Dis Clin North Am. 2004 May;30(2):393-403, viii [PMID: 15172048]
  67. Clin Immunol. 2001 Feb;98(2):175-9 [PMID: 11161973]
  68. Am J Transplant. 2005 Jan;5(1):50-7 [PMID: 15636611]
  69. N Engl J Med. 2003 Oct 16;349(16):1526-33 [PMID: 14561795]
  70. J Pediatr. 2006 May;148(5):623-627 [PMID: 16737873]
  71. Arthritis Rheum. 2006 Feb;54(2):408-20 [PMID: 16447217]
  72. Cancer Treat Rev. 2005 Oct;31(6):456-73 [PMID: 16054760]
  73. Int J Hematol. 2001 Jul;74(1):70-5 [PMID: 11530808]
  74. Immunol Today. 1994 Sep;15(9):450-4 [PMID: 7524522]
  75. Annu Rev Immunol. 2006;24:467-96 [PMID: 16551256]
  76. J Immunol. 2000 Nov 15;165(10):5970-9 [PMID: 11067960]
  77. Arthritis Rheum. 2003 Aug;48(8):2146-54 [PMID: 12905467]
  78. Arthritis Rheum. 2006 Feb;54(2):613-20 [PMID: 16447239]
  79. Best Pract Res Clin Rheumatol. 2002 Apr;16(2):313-32 [PMID: 12041956]
  80. Arthritis Rheum. 2003 Feb;48(2):455-9 [PMID: 12571855]
  81. Arthritis Rheum. 2003 Mar;48(3):719-27 [PMID: 12632425]
  82. J Exp Med. 2004 Jun 21;199(12):1631-40 [PMID: 15197227]
  83. Rheumatology (Oxford). 2005 Feb;44(2):176-82 [PMID: 15494350]
  84. J Clin Oncol. 1998 Aug;16(8):2825-33 [PMID: 9704735]
  85. J Rheumatol Suppl. 2005 Feb;73:25-8; discussion 29-30 [PMID: 15693113]
  86. J Immunol. 2000 Sep 15;165(6):3519-26 [PMID: 10975873]
  87. J Immunol. 2001 Mar 1;166(5):2913-6 [PMID: 11207238]

Grants

  1. K08AR048303/NIAMS NIH HHS

MeSH Term

Animals
Antibodies, Monoclonal
B-Lymphocytes
Humans
Leukocyte Reduction Procedures
Lupus Erythematosus, Systemic

Chemicals

Antibodies, Monoclonal

Word Cloud

Created with Highcharts 10.0.0cellsBSLEdiseaseB-cellclinicalfunctionsdepletionrituximabtreatmenttherapymultiplerolemechanismsincludingtherapeuticpromisingcanremissionefficacypathwaylupuserythematosusautoantibodiesimmunologicalmanifestationsfullydefinedpathogenesisantibody-dependentimmunetypeIIproducepathogeniccytokinesfactorautoantibody-independentfactorslymphoidtissuedevelopmentevidencecompartmentmonoclonalantibodyspecificallydataplacebo-controlledtrialsserumhumanantibodiespatientsresponsediversepotentialinduceautoantibodyalthoughremainsafetyadditionB-cell-targetedapproachBlockadebelimumabBAFFadditionalSystemiccomplexcharacterisednumerousinvolvementorgansystemseventstriggeringonsetyetcentralrecentlygainedprominenceresultresearchmicehumans-independentimportantAutoantibodiescontributeautoimmunitycomplex-mediatedIIIhypersensitivityreactionscytotoxicityinstructinginnateinterferon-alphatumournecrosisinterleukin-1SuggestedincludeantigenpresentationT-cellactivationpolarisationdendritic-cellmodulationSeveralmediatedabilityimmunoregulatorychemokineslymphangiogenicgrowthcriticalcontributionorganisationectopictertiaryGivenlargebodyimplicatingabnormalitiesrecentfocusdevelopinterventionstargetRituximabmouse-humanchimericCD20depletesstudiedextensivelyAlthoughopen-labelawaitconfirmationongoingmulticentrenumberpreliminaryconclusionsdrawnadequacyperipheraldependsachievinghighsustainedconcentrationspharmacokineticsvarieddosemayaffectdrugclearanceanti-chimericeffectivesignificantfavourableresponsesobservedarrayMoreoverappearssevererefractoryameliorationinhibitingproductionand/orinterferingfactimprovementcorrelatesprecedesseveralmonthsdeclinelevelsrelevantsuggestspredominanteffectsubsetultimatelyalsoexperiencenormalisationSignificantquestionsdeterminantscombinationrepeatedcoursesB-cell-depletingapproacheshumanisedanti-CD20anti-CD22AnotherblockcostimulatoryinteractionsTCD40-CD40ligandmetvariablebenefitunfortunatethromboemboliccomplicationsinhibitionB7cytotoxicT-lymphocyteantigen-4IgcurrentlyearlyinvestigationPreliminarybindsneutralisesB-lymphocytestimulatorBLySB-cell-activating[BAFF]nowavailablephasedouble-blindtrialthreedifferentdosesadministeredstandardwelltoleratedreportedlymeetprimaryendpointsstillviewedagentsinterferestudyOveralltherapiestargetingappearprovideimportancewillcontinueelucidaterolessystemic

Similar Articles

Cited By