Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage.

A Sanz, J Gómez, P Caro, G Barja
Author Information
  1. A Sanz: Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University, Madrid, 28040, Spain.

Abstract

Many previous investigations have consistently reported that caloric restriction (40%), which increases maximum longevity, decreases mitochondrial reactive species (ROS) generation and oxidative damage to mitochondrial DNA (mtDNA) in laboratory rodents. These decreases take place in rat liver after only seven weeks of caloric restriction. Moreover, it has been found that seven weeks of 40% protein restriction, independently of caloric restriction, also decrease these two parameters, whereas they are not changed after seven weeks of 40% lipid restriction. This is interesting since it is known that protein restriction can extend longevity in rodents, whereas lipid restriction does not have such effect. However, before concluding that the ameliorating effects of caloric restriction on mitochondrial oxidative stress are due to restriction in protein intake, studies on the third energetic component of the diet, carbohydrates, are needed. In the present study, using semipurified diets, the carbohydrate ingestion of male Wistar rats was decreased by 40% below controls without changing the level of intake of the other dietary components. After seven weeks of treatment the liver mitochondria of the carbohydrate restricted animals did not show changes in the rate of mitochondrial ROS production, mitochondrial oxygen consumption or percent free radical leak with any substrate (complex I- or complex II-linked) studied. In agreement with this, the levels of oxidative damage in hepatic mtDNA and nuclear DNA were not modified in carbohydrate restricted animals. Oxidative damage in mtDNA was one order of magnitude higher than that in nuclear DNA in both dietary groups. These results, together with previous ones, discard lipids and carbohydrates, and indicate that the lowered ingestion of dietary proteins is responsible for the decrease in mitochondrial ROS production and oxidative damage in mtDNA that occurs during caloric restriction.

References

  1. Metabolism. 2002 Jun;51(6):695-701 [PMID: 12037721]
  2. Fiziol Zh. 1990 Sep-Oct;36(5):16-21 [PMID: 2272386]
  3. Free Radic Biol Med. 2002 May 1;32(9):882-9 [PMID: 11978489]
  4. J Bioenerg Biomembr. 2005 Apr;37(2):83-90 [PMID: 15906153]
  5. Biol Rev Camb Philos Soc. 2004 May;79(2):235-51 [PMID: 15191224]
  6. J Gerontol. 1985 Nov;40(6):671-88 [PMID: 4056322]
  7. Am J Nephrol. 2001 Jul-Aug;21(4):331-9 [PMID: 11509807]
  8. Am J Physiol Endocrinol Metab. 2004 Jan;286(1):E31-40 [PMID: 14662512]
  9. Proc Soc Exp Biol Med. 1990 Jan;193(1):31-4 [PMID: 2294520]
  10. J Nutr. 2001 Mar;131(3):903S-906S [PMID: 11238783]
  11. Exp Gerontol. 2000 May;35(3):299-305 [PMID: 10832051]
  12. FASEB J. 2001 Jul;15(9):1589-91 [PMID: 11427495]
  13. Aging (Milano). 1996 Aug;8(4):254-62 [PMID: 8904955]
  14. J Bioenerg Biomembr. 2002 Jun;34(3):227-33 [PMID: 12171072]
  15. J Nutr. 1993 Feb;123(2):269-74 [PMID: 8429371]
  16. FASEB J. 1996 Feb;10(2):333-8 [PMID: 8641567]
  17. J Gerontol A Biol Sci Med Sci. 1995 May;50(3):B148-54 [PMID: 7743394]
  18. J Gerontol. 1988 Jan;43(1):B13-21 [PMID: 3335742]
  19. J Bioenerg Biomembr. 2004 Dec;36(6):545-52 [PMID: 15692733]
  20. Exp Gerontol. 2003 Jan-Feb;38(1-2):47-52 [PMID: 12543260]
  21. J Nutr. 1987 Jun;117(6):1129-35 [PMID: 3598724]
  22. Trends Neurosci. 2004 Oct;27(10):595-600 [PMID: 15374670]
  23. Exp Gerontol. 2003 Nov-Dec;38(11-12):1343-51 [PMID: 14698815]
  24. Physiol Rev. 1998 Apr;78(2):547-81 [PMID: 9562038]
  25. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9112-6 [PMID: 1409611]
  26. Med Hypotheses. 2003 Jun;60(6):924-9 [PMID: 12699727]
  27. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8649-53 [PMID: 16578796]
  28. FASEB J. 1994 Dec;8(15):1302-7 [PMID: 8001743]
  29. PLoS Biol. 2005 Jul;3(7):e223 [PMID: 16000018]
  30. Methods Enzymol. 1999;300:166-84 [PMID: 9919520]
  31. Best Pract Res Clin Endocrinol Metab. 2004 Sep;18(3):393-406 [PMID: 15261845]
  32. Mech Ageing Dev. 1996 Nov 29;92(1):43-51 [PMID: 9032754]
  33. Nature. 1969 Jun 14;222(5198):1050-2 [PMID: 5787087]
  34. Endocrinology. 2005 Sep;146(9):3713-7 [PMID: 15919745]
  35. Food Chem Toxicol. 1991 Nov;29(11):757-64 [PMID: 1761255]
  36. J Bioenerg Biomembr. 2001 Aug;33(4):279-87 [PMID: 11710804]
  37. J Gerontol A Biol Sci Med Sci. 2005 May;60(5):549-55 [PMID: 15972601]
  38. Biogerontology. 2005;6(1):15-26 [PMID: 15834660]
  39. Biosci Biotechnol Biochem. 2005 Jan;69(1):13-8 [PMID: 15665461]

MeSH Term

8-Hydroxy-2'-Deoxyguanosine
Animals
Chromatography, High Pressure Liquid
DNA Damage
Deoxyguanosine
Diet, Carbohydrate-Restricted
Free Radicals
Hydrogen Peroxide
Liver
Male
Mitochondria
Oxidative Stress
Rats
Rats, Wistar
Time Factors

Chemicals

Free Radicals
8-Hydroxy-2'-Deoxyguanosine
Hydrogen Peroxide
Deoxyguanosine

Word Cloud

Created with Highcharts 10.0.0restrictionmitochondrialcaloricoxidativedamage40%DNAmtDNAsevenweeksROSproteincarbohydratedietarypreviouslongevitydecreasesgenerationrodentsliverdecreasewhereaslipidintakecarbohydratesingestionrestrictedanimalsproductionfreeradicalcomplexnuclearManyinvestigationsconsistentlyreportedincreasesmaximumreactivespecieslaboratorytakeplaceratMoreoverfoundindependentlyalsotwoparameterschangedinterestingsinceknowncanextendeffectHoweverconcludingamelioratingeffectsstressduestudiesthirdenergeticcomponentdietneededpresentstudyusingsemipurifieddietsmaleWistarratsdecreasedcontrolswithoutchanginglevelcomponentstreatmentmitochondriashowchangesrateoxygenconsumptionpercentleaksubstrateI-II-linkedstudiedagreementlevelshepaticmodifiedOxidativeoneordermagnitudehighergroupsresultstogetheronesdiscardlipidsindicateloweredproteinsresponsibleoccursCarbohydratechange

Similar Articles

Cited By