Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

Naoko Iwaya, Natsuko Goda, Satoru Unzai, Kenichiro Fujiwara, Toshiki Tanaka, Kentaro Tomii, Hidehito Tochio, Masahiro Shirakawa, Hidekazu Hiroaki
Author Information
  1. Naoko Iwaya: Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Tsurumi, Yokohama, Kanagawa 230-0045, Japan.

Abstract

Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

References

  1. Biochem Biophys Res Commun. 2005 Aug 26;334(2):460-5 [PMID: 16018968]
  2. J Biomol NMR. 1995 Nov;6(3):277-93 [PMID: 8520220]
  3. Prog Biophys Mol Biol. 2000;73(5):339-45 [PMID: 11063779]
  4. Proteins. 1990;7(1):1-15 [PMID: 2184436]
  5. Science. 1989 Jul 7;245(4913):54-7 [PMID: 2787053]
  6. Curr Opin Immunol. 2002 Oct;14(5):622-6 [PMID: 12183163]
  7. Bioinformatics. 2003 Mar 22;19(5):673-4 [PMID: 12651735]
  8. Science. 1993 Nov 26;262(5138):1401-7 [PMID: 8248779]
  9. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857-64 [PMID: 9600884]
  10. Adv Drug Deliv Rev. 2002 Oct 18;54(8):1113-29 [PMID: 12384310]
  11. Nat Struct Biol. 2000 Nov;7 Suppl:943-5 [PMID: 11103994]
  12. Protein Sci. 2004 Mar;13(3):652-8 [PMID: 14978305]
  13. Protein Sci. 2002 Feb;11(2):313-21 [PMID: 11790841]
  14. Methods Biochem Anal. 2003;44:591-612 [PMID: 12647406]
  15. Protein Sci. 2002 Jul;11(7):1714-9 [PMID: 12070324]
  16. Biopolymers. 2000;55(5):407-14 [PMID: 11241216]
  17. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13813-8 [PMID: 16174732]
  18. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D212-5 [PMID: 15608179]
  19. J Biol Chem. 2004 Nov 26;279(48):50060-8 [PMID: 15328346]
  20. J Mol Biol. 2001 Jun 29;310(1):243-57 [PMID: 11419950]
  21. Trends Cell Biol. 2001 Feb;11(2):82-8 [PMID: 11166216]
  22. J Am Chem Soc. 2003 Jan 22;125(3):667-71 [PMID: 12526666]
  23. J Mol Biol. 2001 Jul 6;310(2):311-25 [PMID: 11428892]
  24. Protein Sci. 2002 Sep;11(9):2067-79 [PMID: 12192063]
  25. Bioinformatics. 2004 Mar 1;20(4):594-5 [PMID: 14764565]
  26. Biophys J. 2002 Feb;82(2):1096-111 [PMID: 11806949]
  27. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14652-7 [PMID: 12409616]
  28. J Mol Biol. 2004 Feb 20;336(3):809-23 [PMID: 15095989]
  29. Genomics. 2003 Apr;81(4):437-41 [PMID: 12676568]
  30. Biochemistry. 1998 Sep 8;37(36):12603-10 [PMID: 9730833]
  31. J Struct Funct Genomics. 2004;5(4):231-40 [PMID: 15704011]
  32. Curr Opin Struct Biol. 2002 Dec;12(6):746-53 [PMID: 12504679]
  33. Nature. 2003 Mar 13;422(6928):208-15 [PMID: 12634794]
  34. Methods Enzymol. 2001;339:3-19 [PMID: 11462818]
  35. Bioinformatics. 2004 Sep 1;20(13):2138-9 [PMID: 15044227]
  36. Nucleic Acids Res. 2002 Jan 1;30(1):276-80 [PMID: 11752314]
  37. Protein Sci. 1997 Oct;6(10):2043-58 [PMID: 9336829]
  38. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  39. Biochemistry. 1995 Jul 11;34(27):8642-8 [PMID: 7612604]
  40. Nat Struct Biol. 1997 Aug;4(8):630-4 [PMID: 9253412]
  41. Science. 1991 May 24;252(5009):1162-4 [PMID: 2031185]
  42. Annu Rev Biophys Biomol Struct. 1999;28:75-100 [PMID: 10410796]

MeSH Term

Adenosine Triphosphatases
Amino Acid Sequence
Animals
Circular Dichroism
Humans
Mice
Molecular Sequence Data
Nuclear Magnetic Resonance, Biomolecular
Protein Structure, Secondary
Protein Structure, Tertiary
Sequence Alignment
Spectrometry, Fluorescence

Chemicals

Adenosine Triphosphatases

Word Cloud

Created with Highcharts 10.0.0domaindomainscoiledcoilproteinsdeterminationproteinboundariesdispersion1H-15NHSQCspectraputativeregionboundaryself-associationmethodregionsStructuralindividualisolatedmultidomaincommonapproachpost-genomiceraNovelthusuncharacterizedliberatedintactoftenself-associatedueincorrectlydefinedSelf-associationresultsmissingsignalspoorsignallowsignal-to-noiseratiofoundnon-canonicalclosecancausetransienthydrophobicmonomer-dimerequilibriumsolutionproposerationalpredictadjacentglobularcoreusingprogramCOILSExceptaminoacidsequencepreexistingknowledgeconcerningrequiredsmallnumbermutantminimizedrationallydesignedtestedengineeredexhibitdecreasedassessedimprovedpeaksharpercrosspeaksTwosuccessfulexamplesisolatingnovelN-terminalAAA-ATPasesdemonstratedusefulexperimentalsuitedstructuralgenomicsstudiesFine-tuningminimizingpotential

Similar Articles

Cited By