Sequential Monte Carlo without likelihoods.

S A Sisson, Y Fan, Mark M Tanaka
Author Information
  1. S A Sisson: School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia. scott.sisson@unsw.edu.au

Abstract

Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions in the presence of analytically or computationally intractable likelihood functions. Despite representing a substantial methodological advance, existing methods based on rejection sampling or Markov chain Monte Carlo can be highly inefficient and accordingly require far more iterations than may be practical to implement. Here we propose a sequential Monte Carlo sampler that convincingly overcomes these inefficiencies. We demonstrate its implementation through an epidemiological study of the transmission rate of tuberculosis.

References

  1. N Engl J Med. 1994 Jun 16;330(24):1703-9 [PMID: 7910661]
  2. Mol Biol Evol. 1999 Dec;16(12):1791-8 [PMID: 10605120]
  3. Genetics. 2002 Dec;162(4):2025-35 [PMID: 12524368]
  4. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15324-8 [PMID: 14663152]
  5. Nat Rev Genet. 2006 Oct;7(10):759-70 [PMID: 16983372]
  6. Genetics. 1997 Feb;145(2):505-18 [PMID: 9071603]
  7. Genetics. 2005 Nov;171(3):1419-36 [PMID: 16143628]
  8. Genetics. 2006 Mar;172(3):1607-19 [PMID: 16299396]
  9. Genetics. 2006 Jul;173(3):1511-20 [PMID: 16624908]

MeSH Term

Algorithms
Animals
Bayes Theorem
Computer Simulation
Humans
Likelihood Functions
Models, Statistical
Monte Carlo Method
Tuberculosis

Word Cloud

Created with Highcharts 10.0.0MonteCarlomethodsRecentnewBayesiansimulationprovidedwaysevaluatingposteriordistributionspresenceanalyticallycomputationallyintractablelikelihoodfunctionsDespiterepresentingsubstantialmethodologicaladvanceexistingbasedrejectionsamplingMarkovchaincanhighlyinefficientaccordinglyrequirefariterationsmaypracticalimplementproposesequentialsamplerconvincinglyovercomesinefficienciesdemonstrateimplementationepidemiologicalstudytransmissionratetuberculosisSequentialwithoutlikelihoods

Similar Articles

Cited By