Shunsuke Suzuki, Ryuichi Ono, Takanori Narita, Andrew J Pask, Geoffrey Shaw, Changshan Wang, Takashi Kohda, Amber E Alsop, Jennifer A Marshall Graves, Yuji Kohara, Fumitoshi Ishino, Marilyn B Renfree, Tomoko Kaneko-Ishino
Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.
Dev Genes Evol. 2000 Jan;210(1):18-20
[PMID:
10603082]
Cytogenet Genome Res. 2006;113(1-4):81-9
[PMID:
16575166]
Mol Cell. 2000 Apr;5(4):707-16
[PMID:
10882106]
Genomics. 2001 Apr 15;73(2):232-7
[PMID:
11318613]
Biochem Biophys Res Commun. 2002 Feb 8;290(5):1499-505
[PMID:
11820791]
Genome Res. 2003 Jul;13(7):1696-705
[PMID:
12840045]
Science. 2003 Dec 12;302(5652):1934-40
[PMID:
14671295]
Mol Phylogenet Evol. 2004 Oct;33(1):240-50
[PMID:
15324852]
Dev Biol. 1973 Jul;33(1):62-79
[PMID:
4789603]
Nature. 1987 Jul 16-22;328(6127):251-4
[PMID:
3600806]
Mol Cell Biol. 1988 Mar;8(3):1093-102
[PMID:
2452971]
Trends Genet. 1988 Mar;4(3):59-62
[PMID:
3076291]
Nature. 1991 May 9;351(6322):153-5
[PMID:
1709450]
Cell. 1991 Jul 12;66(1):77-83
[PMID:
1649008]
Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827-31
[PMID:
1542678]
Nucleic Acids Res. 1992 Jun 25;20(12):3139-45
[PMID:
1320255]
Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10706-10
[PMID:
1279691]
EMBO J. 1993 Feb;12(2):435-42
[PMID:
8382607]
Nature. 1993 Apr 22;362(6422):751-5
[PMID:
8469285]
Science. 1993 Apr 16;260(5106):309-10
[PMID:
8469984]
Nature. 1993 Nov 25;366(6453):362-5
[PMID:
8247133]
Trends Genet. 1997 Aug;13(8):335-40
[PMID:
9260521]
Genes Dev. 1999 Mar 15;13(6):698-708
[PMID:
10090726]
Nat Genet. 2004 Dec;36(12):1291-5
[PMID:
15516931]
Mech Dev. 2005 Feb;122(2):213-22
[PMID:
15652708]
Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3354-9
[PMID:
15718282]
Gene. 2005 Jan 17;345(1):101-11
[PMID:
15716091]
J Mol Evol. 2005 Oct;61(4):481-90
[PMID:
16155747]
Nat Genet. 2006 Jan;38(1):101-6
[PMID:
16341224]
Cytogenet Genome Res. 2006;113(1-4):24-30
[PMID:
16575159]
Mol Cell Biol. 2000 May;20(9):3308-15
[PMID:
10757814]