Extreme accumulation of nucleotides in simulated hydrothermal pore systems.

Philipp Baaske, Franz M Weinert, Stefan Duhr, Kono H Lemke, Michael J Russell, Dieter Braun
Author Information
  1. Philipp Baaske: Biophysics Department, Ludwig-Maximilians Universität München, Amalienstrasse 54, 80799 Munich, Germany.

Abstract

We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10(8)-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.

References

  1. Phys Rev Lett. 2003 Oct 10;91(15):158103 [PMID: 14611502]
  2. Nature. 1994 May 19;369(6477):221-4 [PMID: 8183342]
  3. Nature. 2001 Jan 11;409(6817):178-81 [PMID: 11196638]
  4. Eur Phys J E Soft Matter. 2004 Nov;15(3):277-86 [PMID: 15592768]
  5. Orig Life Evol Biosph. 2000 Dec;30(6):519-26 [PMID: 11196572]
  6. Nature. 1989 Mar 16;338(6212):217-24 [PMID: 2466202]
  7. Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):59-83; discussion 83-5 [PMID: 12594918]
  8. Phys Rev Lett. 2003 Dec 12;91(24):245501 [PMID: 14683132]
  9. Orig Life Evol Biosph. 2002 Aug;32(4):311-32 [PMID: 12458736]
  10. Nature. 2001 Feb 22;409(6823):1083-91 [PMID: 11234022]
  11. Proc Natl Acad Sci U S A. 1991 Nov;88:10014-7 [PMID: 11538487]
  12. Trends Biochem Sci. 2001 Oct;26(10):597-604 [PMID: 11590012]
  13. Trends Genet. 2005 Dec;21(12):647-54 [PMID: 16223546]
  14. Naturwissenschaften. 1976 Feb;63(2):68-80 [PMID: 934343]
  15. Phys Rev Lett. 2002 Oct 28;89(18):188103 [PMID: 12398641]
  16. Science. 1999 Feb 5;283(5403):831-3 [PMID: 9933163]
  17. Science. 2005 Mar 4;307(5714):1428-34 [PMID: 15746419]
  18. Phys Biol. 2004 Jun;1(1-2):P1-8 [PMID: 16204812]
  19. Science. 2002 Oct 25;298(5594):793 [PMID: 12399582]
  20. Science. 1953 May 15;117(3046):528-9 [PMID: 13056598]
  21. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11537-41 [PMID: 15284444]
  22. Biosystems. 1975 May;6(4):224-8 [PMID: 1137721]
  23. J Geol Soc London. 1997 May;154(3):377-402 [PMID: 11541234]
  24. Naturwissenschaften. 1971 Oct;58(10):465-523 [PMID: 4942363]
  25. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4283-7 [PMID: 8183902]
  26. Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19678-82 [PMID: 17164337]
  27. Nature. 2001 Jul 12;412(6843):145-9 [PMID: 11449263]

MeSH Term

Diffusion
Hot Temperature
Models, Chemical
Nucleotides
Origin of Life
Porosity

Chemicals

Nucleotides

Word Cloud

Created with Highcharts 10.0.0poreporesmolecularthermalgradientaccumulationmoleculesnucleotideslifetransporthydrothermalsystemsfindprovidesingledrivenacrosshandaccumulateexponentiallytemperaturelongpolynucleotidessimulateelongatedinfluencedextremewidevarietypluggedmechanismablehighlyconcentratedsuitableoperationsRNAworldoriginsolelyonefluidshuttledconvectionalongwhereasdriftthermodiffusionresultmillimeter-sizedeven108-foldmicrometer-sizedregionsenhancedconcentrationfoundbulkwaternearclosedbottomenddependslengthdifferenceconsiderablyrobustrespectchangescleftgeometrydimensionsWhereasthincanconcentratethickershortequallywellallowvariouscompositionssettingalsoprovidesoscillationshownpreviouslyreplicateDNAprotein-assistedPCRresultsindicateevolvecomplicatedactivemembranerequiredinitialstepsinterlinkedmineralcompellinghigh-concentrationstartingpointevolutionExtremesimulated

Similar Articles

Cited By