Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models.

Maya Mincheva, Marc R Roussel
Author Information
  1. Maya Mincheva: Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada. mincheva@math.wisc.edu

Abstract

A chemical mechanism is a model of a chemical reaction network consisting of a set of elementary reactions that express how molecules react with each other. In classical mass-action kinetics, a mechanism implies a set of ordinary differential equations (ODEs) which govern the time evolution of the concentrations. In this article, ODE models of chemical kinetics that have the potential for multiple positive equilibria or oscillations are studied. We begin by considering some methods of stability analysis based on the digraph of the Jacobian matrix. We then prove two theorems originally given by A. N. Ivanova which correlate the bifurcation structure of a mass-action model to the properties of a bipartite graph with nodes representing chemical species and reactions. We provide several examples of the application of these theorems.

References

  1. Biophys Chem. 1983 Sep;18(2):73-87 [PMID: 6626688]
  2. C R Biol. 2002 Nov;325(11):1085-95 [PMID: 12506722]
  3. Biophys Chem. 2007 Feb;125(2-3):314-9 [PMID: 17011698]
  4. Biotechnol Prog. 1999 May-Jun;15(3):296-303 [PMID: 10356246]
  5. Eur J Biochem. 2004 Oct;271(19):3877-87 [PMID: 15373833]
  6. J Cell Biol. 2004 Feb 2;164(3):353-9 [PMID: 14744999]
  7. Chaos. 2001 Mar;11(1):170-179 [PMID: 12779451]
  8. Photosynth Res. 1992 Dec;34(3):387-95 [PMID: 24408834]
  9. Biochemistry (Mosc). 2003 Oct;68(10):1121-31 [PMID: 14616083]
  10. Proc Biol Sci. 1995 Sep 22;261(1362):319-24 [PMID: 8587874]
  11. Biochemistry (Mosc). 2003 Oct;68(10):1109-20 [PMID: 14616082]
  12. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  13. Syst Biol (Stevenage). 2006 Jul;153(4):179-86 [PMID: 16986619]
  14. Eur J Biochem. 1968 Mar;4(1):79-86 [PMID: 4230812]
  15. Nat Rev Mol Cell Biol. 2001 Dec;2(12):908-16 [PMID: 11733770]
  16. J Theor Biol. 2002 May 21;216(2):229-41 [PMID: 12079373]
  17. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8697-702 [PMID: 16735474]
  18. FEBS Lett. 1987 Jun 15;217(2):212-5 [PMID: 3036579]
  19. J Theor Biol. 2002 May 21;216(2):179-91 [PMID: 12079370]
  20. Biomed Biochim Acta. 1990;49(8-9):645-50 [PMID: 2082913]
  21. Mol Biol Cell. 2003 Nov;14(11):4695-706 [PMID: 14551250]
  22. Bioinformatics. 2003 Mar 1;19(4):532-8 [PMID: 12611809]
  23. J Math Biol. 2007 Jul;55(1):87-104 [PMID: 17541595]
  24. FEBS Lett. 2002 Dec 18;532(3):295-9 [PMID: 12482582]
  25. Syst Biol (Stevenage). 2006 Mar;153(2):61-9 [PMID: 16986254]
  26. Prog Biophys Mol Biol. 2004 Sep;86(1):5-43 [PMID: 15261524]
  27. Biochemistry (Mosc). 2002 Apr;67(4):473-84 [PMID: 11996662]

MeSH Term

Algorithms
Cell Cycle
Enzymes
Kinetics
MAP Kinase Signaling System
Models, Chemical
Protein Serine-Threonine Kinases
Schizosaccharomyces

Chemicals

Enzymes
Protein Serine-Threonine Kinases

Word Cloud

Created with Highcharts 10.0.0chemicalmechanismmodelsetreactionsmass-actionkineticsordinarydifferentialmodelsoscillationsmethodsanalysistheoremsreactionnetworkconsistingelementaryexpressmoleculesreactclassicalimpliesequationsODEsgoverntimeevolutionconcentrationsarticleODEpotentialmultiplepositiveequilibriastudiedbeginconsideringstabilitybaseddigraphJacobianmatrixprovetwooriginallygivenNIvanovacorrelatebifurcationstructurepropertiesbipartitegraphnodesrepresentingspeciesprovideseveralexamplesapplicationGraph-theoreticbiochemicalnetworksMultistabilityequation

Similar Articles

Cited By